Computation Structures - Lecture 21

Parallel Processing

Computation Structures - Lecture 21

About

This document is part of the "Computation Structures" course, available at https://PersonalComput
e.net/resources/computation-structures.

The objective of this course is to provide a solid foundation on the inner workings of computers, and
how to use them efficiently. Practically, it tries to answer the question "Why is my computer working
like this?" (where "like this" can mean "slow", "fast", "efficient" or "intermittently freezing").

Its intended audience is first and second-year university students, so its prerequisites are high-school
levels of understanding for math and physics, and a beginner-level understanding of programming. It
is also very useful to anyone whose job involves programming, but hasn’t taken a formal course in
Computer Architectures - a topic that is often overlooked in software or math-oriented degrees.

The Course Contents chapters use the materials from the original course (the MIT OpenCourseWare
release), with very small changes (mostly cosmetic in nature).

Where existing, the Real World Implications chapters provide some additional context and explana-
tions, not present in the MIT OpenCourseWare edition.

If you wish to download the "source code" for the course, go to https://github.com/PersonalCompute-
net/computation-structures/.

Credits

Computation Structures (6.004), Spring 2017 - Original course content, from MIT OpenCourseWare.
Course led by Chris Terman, at MIT.
Originally published at https://ocw.mit.edu/6-004S17 and https://github.com/computation-
structures/course/.
Licensed under Creative Commons BY-NC-SA 4.0 - https://ocw.mit.edu/terms.

Eisvogel - LaTeX template and cover artwork.
Created by Pascal Wagler - https://github.com/Wandmalfarbe/.
Originally published at https://github.com/Wandmalfarbe/pandoc-latex-template/.
Licensed under BSD 3-clause license.

Licensing

This work is licensed under a Creative Commons “Attribution- @@@@
NonCommercial-ShareAlike 4.0 International” license.

URL: https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en

https://PersonalCompute.net/resources/computation-structures
https://PersonalCompute.net/resources/computation-structures
https://github.com/PersonalCompute-net/computation-structures/
https://github.com/PersonalCompute-net/computation-structures/
https://ocw.mit.edu/6-004S17
https://github.com/computation-structures/course/
https://github.com/computation-structures/course/
https://ocw.mit.edu/terms
https://github.com/Wandmalfarbe/
https://github.com/Wandmalfarbe/pandoc-latex-template/
https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en
https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en
https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en

Computation Structures - Lecture 21

Course Contents

Processor Performance

Processor Performance

Time _ Instructions, Cycles Time
Program Program Instruction Cycle
CPI teLk

* Pipelining lowers tc . What about CPI?

« CPI = CPly, + CPI .y

— CPligeq: cycles per instruction if no stall

* CPI,,, contributors
— Data hazards
— Control hazards: branches, exceptions
— Memory latency: cache misses

Figure 1.

The modern world has an insatiable appetite for computation, so system architects are always thinking
about ways to make programs run faster. The running time of a program is the product of three terms:

The number of instructions in the program, multiplied by the average number of processor cycles
required to execute each instruction (CPI), multiplied by the time required for each processor cycle

(terk).

To decrease the running time we need to decrease one or more of these terms. The number of in-
structions per program is determined by the ISA and by the compiler that produced the sequence of
assembly language instructions to be executed. Both are fair game, but for this discussion, let’s work
on reducing the other two terms.

As we’ve seen, pipelining reduces ¢k by dividing instruction execution into a sequence of steps, each
of which can complete its task in a shorter ¢ x. What about reducing CPI?

In our 5-stage pipelined implementation of the Beta, we designed the hardware to complete the
execution of one instruction every clock cycle, so CPI_ideal is 1. But sometimes the hardware has
to introduce “NOP bubbles” into the pipeline to delay execution of a pipeline stage if the required
operation couldn’t (yet) be completed. This happens on taken branch instructions, when attempting to
immediately use a value loaded from memory by the LD instruction, and when waiting for a cache miss
to be satisfied from main memory. CPI_stall accounts for the cycles lost to the NOPs introduced into
the pipeline. Its value depends on the frequency of taken branches and immediate use of LD results.

2

Computation Structures - Lecture 21

Typically it’s some fraction of a cycle. For example, if a 6-instruction loop with a LD takes 8 cycles to
complete, CPI_stall for the loop would be 2/6, i.e., 2 extra cycles for every 6 instructions.

5-Stage Pipelined Processors

5-Stage Pipelined Processors

+ Advantages
— CPL.ais 1 (pipelining)

E — Simple, elegant

+ Still used in ARM & MIPS processors
ALU * Room for improvement

— Upper performance bound is CPI=1
@ — High-latency instructions not handled well

« 1 stage for accesses to large caches or multiplier

WB
_ + Long clock cycle time

— Unnecessary stalls due to rigid pipeline
« If one instruction stalls, anything behind it stalls

Figure 2.

Our classic 5-stage pipeline is an effective compromise that allows for a substantial reduction of tcrx
while keeping CPI_stall to a reasonably modest value.

There is room for improvement. Since each stage is working on one instruction at a time, CPI_ideal is
1.

Slow operations - e.g., completing a multiply in the ALU stage, or accessing a large cache in the IF or
MEM stages - force tck to be large to accommodate all the work that has to be done in one cycle.

The order of the instructions in the pipeline is fixed. If, say, a LD instruction is delayed in the MEM
stage because of a cache miss, all the instructions in earlier stages are also delayed even though their
execution may not depend on the value produced by the LD. The order of instructions in the pipeline
always reflects the order in which they were fetched by the IF stage.

Let’s look into what it would take to relax these constraints and hopefully improve program runtimes.

Computation Structures - Lecture 21

Improving 5-Stage Pipeline Performance

Improving 5-stage Pipeline Performance

* Lower tq k: deeper pipelines
— Overlap more instructions

Figure 3.

Increasing the number of pipeline stages should allow us to decrease the clock cycle time. We’d add
stages to break up performance bottlenecks, e.g., adding additional pipeline stages (MEM1 and MEM2)
to allow a longer time for memory operations to complete. This comes at cost to CPI_stall since each
additional MEM stage means that more NOP bubbles have to be introduced when there’s a LD data
hazard. Deeper pipelines mean that the processor will be executing more instructions in parallel.

Computation Structures - Lecture 21

Limits to Pipeline Depth

Limits to Pipeline Depth

« Each pipeline stage introduces some overhead (O)
— Propagation delay of pipeline registers
— Setup and hold times
— Clock skew

— Inequalities in work per stage

« Cannot break up work into stages at

arbitrary points E E

« If original to x was T, with N stages tq ¢ is T/N+O
— If N—eo, speedup =T / (T/N+O) — T/O
« Assuming that CPI stays constant

— Eventually overhead dominates and deeper pipelines have
diminishing returns

Figure 4.

Let’s interrupt enumerating our performance shopping list to think about limits to pipeline depth.

Each additional pipeline stage includes some additional overhead costs to the time budget. We have
to account for the propagation, setup, and hold times for the pipeline registers. And we usually have to
allow a bit of extra time to account for clock skew, i.e., the difference in arrival time of the clock edge at
each register. And, finally, since we can’t always divide the work exactly evenly between the pipeline
stages, there will be some wasted time in the stages that have less work. We’ll capture all of these
effects as an additional per-stage time overhead of O.

If the original clock period was T, then with NV pipeline stages, the clock period will be T/N + O.

At the limit, as IV becomes large, the speedup approaches 7'/O. In other words, the overhead starts to
dominate as the time spent on work in each stage becomes smaller and smaller. At some point adding
additional pipeline stages has almost no impact on the clock period.

As a data point, the Intel Core-2 x86 chips (nicknamed “Nehalem”) have a 14-stage execution pipeline.

Computation Structures - Lecture 21

Improving 5-Stage Pipeline Performance

Improving 5-stage Pipeline Performance

* Lower to it deeper pipelines

— Overlap more instructions
« Higher CPIl,,.,;: wider pipelines

— Each pipeline stage processes multiple instructions
* Lower CPI,: out-of-order execution

— Execute each instruction as soon as its source operands
are available

« Balance conflicting goals
— Deeper & wider pipelines = more control hazards
— Branch prediction

« It all works because of instruction-level parallelism
(ILP)

Figure 5.

Okay, back to our performance shopping list...

There may be times we can arrange to execute two or more instructions in parallel, assuming that their
executions are independent from each other. This would increase CPI_ideal at the cost of increasing
the complexity of each pipeline stage to deal with concurrent execution of multiple instructions.

If there’s an instruction stalled in the pipeline by a data hazard, there may be following instructions
whose execution could still proceed. Allowing instructions to pass each other in the pipeline is called
out-of-order execution. We’d have to be careful to ensure that changing the execution order didn’t
affect the values produced by the program.

More pipeline stages and wider pipeline stages increase the amount of work that has to be discarded on
control hazards, potentially increasing CPI_stall. So it’s important to minimize the number of control
hazards by predicting the results of a branch (i.e., taken or not taken) so that we increase the chances
that the instructions in the pipeline are the ones we’ll want to execute.

Our ability to exploit wider pipelines and out-of-order execution depends on finding instructions that
can be executed in parallel or in different orders. Collectively these properties are called “instruction-
level parallelism” (ILP).

Computation Structures - Lecture 21

Instruction-level Parallelism (ILP)

Instruction Level Parallelism (ILP)

Sequential Code “Safe” Parallel Code

Toop: Tloop:
LD(n, rl) 5 5
CMPLT(r31, rl1, r2) LDCn, r
BF(r2, done) —
LDCr, r2) CMPLT(r31, r1, r2)
LD(n, r1) BF(rZ‘;,dT)p/j7
MUL(Crl, r2, r3))
et S LD(Cr, wrl) LD(n, r4)
LD(n,r4) MUL(;W) SUBC(r4, 1, r4)
SUBC(r4, 1, rd4) 7 BRCloopy
STCrd, m ST(r3, r) ST(r4, n) BR(loop)
BR(Toop) done: These last two can

done: be solved with

renaming, i.e., giving

n
r= | | i — Write-after-write ﬁ each result a unigue
i=1

—» Write-after-read register name.

— Read-after-write

Figure 6.

Here’s an example that will let us explore the amount of ILP that might be available. On the left is an
unoptimized loop that computes the product of the first N integers. On the right, we’ve rewritten the
code, placing instructions that could be executed concurrently on the same line.

First notice the red line following the BF instruction. Instructions below the line should only be executed
if the BF is not taken. That doesn’t mean we couldn’t start executing them before the results of the
branch are known, but if we executed them before the branch, we would have to be prepared to throw
away their results if the branch was taken.

The possible execution order is constrained by the read-after-write (RAW) dependencies shown by the
red arrows. We recognize these as the potential data hazards that occur when an operand value for
one instruction depends on the result of an earlier instruction. In our 5-stage pipeline, we were able to
resolve many of these hazards by bypassing values from the ALU, MEM, and WB stages back to the RF
stage where operand values are determined.

Of course, bypassing will only work when the instruction has been executed so its result is available for
bypassing! So in this case, the arrows are showing us the constraints on execution order that guarantee
bypassing will be possible.

There are other constraints on execution order. The green arrow identifies a write-after-write (WAW)
constraint between two instructions with the same destination register. In order to ensure the correct
valueisin R2 at the end of the loop, the LD(r,R2) instruction has to store its result into the register
file after the result of the CMPLT instruction is stored into the register file.

Computation Structures - Lecture 21

Similarly, the blue arrow shows a write-after-read (WAR) constraint that ensures that the correct values
are used when accessing a register. In this case, LD(r,R2) must store into R2 after the Ra operand for
the BF has been read from R2.

As it turns out, WAW and WAR constraints can be eliminated if we give each instruction result a unique
register name. This can actually be done relatively easily by the hardware by using a generous supply
of temporary registers, but we won’t go into the details of renaming here. The use of temporary
registers also makes it easy to discard results of instructions executed before we know the outcomes of
branches.

In this example, we discovered that the potential concurrency was actually pretty good for the instruc-
tions following the BF.

Wider or Superscalar Pipelines

Wider or Superscalar Pipelines

+ Each stage operates on up to N
instructions each clock cycle
— Known as wide or superscalar pipelines
— CPlLgea = 1/N

Fetch

Ad
I 1

Dec:)de
Read Registers
A

v * Options (from simpler to harder)
AU — One integer and one floating-point

: 1 instruction
Memory — Any N=2 instructions

- - — Any N=4 instructions

— Any N=? Instructions
* What are the limits?

Write Registers

See http://people.ee.duke.edu/~sorin/ece252/lectures/3-superscalar.pdf

Figure 7.

To take advantage of this potential concurrency, we’ll need to modify the pipeline to execute some
number N of instructions in parallel. If we can sustain that rate of execution, CPI_ideal would then be
1/N since we’d complete the execution of N instructions in each clock cycle as they exited the final
pipeline stage.

So what value should we choose for N? Instructions that are executed by different ALU hardware
are easy to execute in parallel, e.g., ADDs and SHIFTSs, or integer and floating-point operations. Of
course, if we provided multiple adders, we could execute multiple integer arithmetic instructions
concurrently. Having separate hardware for address arithmetic (called LD/ST units) would support
concurrent execution of LD/ST instructions and integer arithmetic instructions.

Computation Structures - Lecture 21

This set of lecture slides from Duke gives a nice overview of techniques used in each pipeline stage to
support concurrent execution.

Basically by increasing the number of functional units in the ALU and the number of memory ports
on the register file and main memory, we would have what it takes to support concurrent execution
of multiple instructions. So, what’s the right tradeoff between increased circuit costs and increased
concurrency?

As a data point, the Intel Nehalem core can complete up to 4 micro-operations per cycle, where each
micro-operation corresponds to one of our simple RISC instructions.

A Modern Out-of-Order Superscalar Processor

A Modern Out-of-Order Superscalar Processor

Needed to)

. . > I-Cache
avoid high . For OoO:
CPIsra, on _ Banch L[Eereh Unit determine when
L= 5
deep pipelines g i o) operands are
= v Instruction Buffer ready fDr, Insr
Decode/Rename
Dispatch
1 v
T I T T Reservation Stations
g AJ v A\ A v v
o Int Int FP FP us us
s}
5
o
A 'y B
v v Make sure side-

In Order
>

-

Y
Reorder Buffer SRes effects happen
) ;

Retire in correct
AJ v order!
Write Buffer Y I » D-Cache

Figure 8.

Here’s a simplified diagram of a modern out-of-order superscalar processor.

Instruction fetch and decode handles, say, 4 instructions at a time. The ability to sustain this execution
rate depends heavily on the ability to predict the outcome of branch instructions, ensuring that the wide
pipeline will be mostly filled with instructions we actually want to execute. Good branch prediction
requires the use of the history from previous branches and there’s been a lot of cleverness devoted to
getting good predictions from the least amount of hardware! If you’re interested in the details, search
for “branch predictor” on Wikipedia.

The register renaming happens during instruction decode, after which the instructions are ready to be
dispatched to the functional units.

Computation Structures - Lecture 21

If an instruction needs the result of an earlier instruction as an operand, the dispatcher has identified
which functional unit will be producing the result. The instruction waits in a queue until the indicated
functional unit produces the result and when all the operand values are known, the instruction is finally
taken from the queue and executed. Since the instructions are executed by different functional units
as soon as their operands are available, the order of execution may not be the same as in the original
program.

After execution, the functional units broadcast their results so that waiting instructions know when to
proceed. The results are also collected in a large reorder buffer so that they can be retired (i.e., write
their results in the register file) in the correct order.

Whew! There’s a lot of circuitry involved in keeping the functional units fed with instructions, knowing
when instructions have all their operands, and organizing the execution results into the correct order.
So how much speed up should we expect from all this machinery? The effective CPI is very program-
specific, depending as it does on cache hit rates, successful branch prediction, available ILP, and so on.
Given the architecture described here the best speed up we could hope for is a factor of 4. Googling
around, it seems that the reality is an average speed-up of 2, maybe slightly less, over what would be
achieved by an in-order, single-issue processor.

Limits to Single-Processor Performance

Limits To Single-Processor Performance

* Pipeline depth: getting close to pipelining limits
— Clocking overheads, CPI degradation

* Branch prediction & memory latency limit the
practical benefits of out-of-order execution

*« Power grows superlinearly with higher frequency &
more OoO logic

* Extreme design complexity

* Limited ILP - Must exploit DLP and TLP
— Data-Level Parallelism: Vector extensions, GPUs
— Thread-Level Parallelism: Multiple threads and cores

Figure 9.

What can we expect for future performance improvements in out-of-order, superscalar pipelines?

Increases in pipeline depth can cause CPI_stall and timing overheads to rise. At the current pipeline
depths the increase in CPI_stall is larger than the gains from decreased tckx and so further increases

10

Computation Structures - Lecture 21

in depth are unlikely.

A similar tradeoff exists between using more out-of-order execution to increase ILP and the increase in
CPI_stall caused by the impact of mis-predicted branches and the inability to run main memories any
faster.

Power consumption increases more quickly than the performance gains from lower ¢k and additional
out-of-order execution logic.

The additional complexity required to enable further improvements in branch prediction and concur-
rent execution seems very daunting.

All of these factors suggest that is unlikely that we’ll see substantial future improvements in the
performance of out-of-order superscalar pipelined processors.

So system architects have turned their attention to exploiting data-level parallelism (DLP) and thread-
level parallelism (TLP). These are our next two topics.

Data-Level Parallelism

Data-Level Parallelism

» Same operation applied to multiple data elements
for (int i = @; i < 16; i++) x[i] = a[i] + b[i];

» Exploit with vector processors or vector ISA extensions

b
data

Data
Memory

addr

Instruction| addr

Unit
data
» Each datapath has its own local storage (register file)

» All datapaths execute the same instruction

» Memory access with vector loads and stores + wide memory port

Figure 10.

For some applications, data naturally comes in vector or matrix form. For example, a vector of digitized
samples representing an audio waveform over time, or an matrix of pixel colors in a 2D image from a
camera. When processing that data, it’s common to perform the same sequence of operations on each
data element. The example code shown here is computing a vector sum, where each component of
one vector is added to the corresponding component of another vector.

11

Computation Structures - Lecture 21

By replicating the datapath portion of our CPU, we can design special-purpose vector processors
capable of performing the same operation on many data elements in parallel. Here we see that the
register file and ALU have been replicated and the control signals from decoding the current instruction
are shared by all the datapaths. Data is fetched from memory in big blocks (very much like fetching a
cache line) and the specified register in each datapath is loaded with one of the words from the block.
Similarly each datapath can contribute a word to be stored as a contiguous block in main memory. In
such machines, the width of the data buses to and from main memory is many words wide, so a single
memory access provides data for all the datapaths in parallel.

Executing a single instruction on a machine with IV datapaths is equivalent to executing IV instructions
on a conventional machine with a single datapath. The result achieves a lot of parallelism without the
complexities of out-of-order superscalar execution.

Vector Code Example

Vector Code Example

for (i = 0; i < 16; i++) x[i] = a[i] + b[i];

Beta assembly Equivalent vector assembly
CMOVE (16, R@) LD.V(R1, @, V1)
loop: LD(R1, ©, R4) LD.V(R2, @, V2)
LD(R2, @, R5) ADD.V(V1, V2, V3)
ADDC(R1, 4, R1) ST.V(V3, @, R3)

ADDC(R2, 4, R2)
ADD(R4, R5, R6)
ST(R6, 8, R3)
ADDC(R3, 4, R3)
SUBC(R®, 1, R1)
BNE(R@, loop)
of cycles = 1 + 10*15 + 9 = 160 # of cycles = 4

Figure 11.

Suppose we had a vector processor with 16 datapaths. Let’s compare its performance on a vector-sum
operation to that of a conventional pipelined Beta processor.

Here’s the Beta code, carefully organized to avoid any data hazards during execution. There are 9
instructions in the loop, taking 10 cycles to execute if we count the NOP introduced into the pipeline
when the BNE at the end of the loop is taken. It takes 160 cycles to sum all 16 elements assuming no
additional cycles are required due to cache misses.

And here’s the corresponding code for a vector processor where we’ve assumed constant-sized 16-
element vectors. Note that “V” registers refer to a particular location in the register file associated with

12

Computation Structures - Lecture 21

each datapath, while the “R” registers are the conventional Beta registers used for address computa-
tions, etc. It would only take 4 cycles for the vector processor to complete the desired operations, a
speed-up of 40.

This example shows the best-possible speed-up. The key to a good speed-up is our ability to “vectorize”
the code and take advantage of all the datapaths operating in parallel. This isn’t possible for every
application, but for tasks like audio or video encoding and decoding, and all sorts of digital signal
processing, vectorization is very doable. Memory operations enjoy a similar performance improvement
since the access overhead is amortized over large blocks of data.

Data-Dependent Vector Operations

Data-dependent Vector Operations

for (i = 0; i < 16; i++)
if (a[i] < b[i]) c[i] = c[i] + 3;

Equivalent vector assembly

LD.V(R1, @, V1) // load a[i]
LD.V(R2, @, V2) // load b[i]
LD.V(R3, @, V3) // load c[i]
CMPLT.V(V1, V2) // set local predicate flags

// predicated instructions perform the

// indicated operation if the local predicate
// flag istrue or isfalse.

ADDC.V.iftrue(Vv3, 3, V3)

Figure 12,

You might wonder ifit’s possible to efficiently perform data-dependent operations on a vector processor.
Data-dependent operations appear as conditional statements on conventional machines, where the
body of the statement is executed if the condition is true. If testing and branching is under the control
of the single instruction execution engine, how can we take advantage of the parallel datapaths?

The trick is provide each datapath with a local predicate flag. Use a vectorized compare instruction
(CMPLT.V) to perform the a[i] < b[i] comparisons in parallel and remember the result locally in each
datapath’s predicate flag. Then extend the vector ISA to include “predicated instructions” which check
the local predicate to see if they should execute or do nothing. In this example, ADDC.V.iftrue only
performs the ADDC on the local data if the local predicate flag is true.

Instruction predication is also used in many non-vector architectures to avoid the execution-time
penalties associated with mis-predicted conditional branches. They are particularly useful for simple

13

Computation Structures - Lecture 21

arithmetic and boolean operations (i.e., very short instruction sequences) that should be executed
only if a condition is met. The x86 ISA includes a conditional move instruction, and in the 32-bit ARM
ISA almost all instructions can be conditionally executed.

Vector Processing Implementations

Vector Processing Implementations

« Advantages of vector ISAs:
: 1 instruction defines N operations
: N operations are (data) parallel and independent
: Memory operations describe regular patterns

*« Modern CPUs: Vector extensions & wider registers
— SSE: 128-bit operands (4x32-bit or 2x64-bit)
— AVX (2011): 256-bit operands (8x32-bit or 4x64-bit)
— AVX-512 (upcoming): 512-bit operands
— Explicit parallelism, extracted at compile time (vectorization)

+« GPUs: Designed for data parallelism from the ground up
— 32 to 64 32-bit floating-point elements

— Implicit parallelism, scalar binary with multiple instances
executed in lockstep (and regrouped dynamically)

Figure 13.

The power of vector processors comes from having 1 instruction initiate N parallel operations on N
pairs of operands.

Most modern CPUs incorporate vector extensions that operate in parallel on 8-, 16-, 32- or 64-bit
operands organized as blocks of 128-, 256-, or 512-bit data. Often all that’s needed is some simple
additional logic on an ALU designed to process full-width operands. The parallelism is baked into the
vector program, not discovered on-the-fly by the instruction dispatch and execution machinery. Writing
the specialized vector programs is a worthwhile investment for certain library functions which see a
lot use in processing today’s information streams with their heavy use of images, and A/V material.

Perhaps the best example of architectures with many datapaths operating in parallel are the graphics
processing units (GPUs) found in almost all computer graphics systems. GPU datapaths are typically
specialized for 32- and 64-bit floating point operations found in the algorithms needed to display in
real-time a 3D scene represented as billions of triangular patches as a 2D image on the computer screen.
Coordinate transformation, pixel shading and antialiasing, texture mapping, etc., are examples of
“embarrassingly parallel” computations where the parallelism comes from having to perform the same
computation independently on millions of different data objects. Similar problems can be found in the
fields of bioinformatics, big data processing, neural net emulation used in deep machine learning, and

14

Computation Structures - Lecture 21

so on. Increasingly, GPUs are used in many interesting scientific and engineering calculations and not

just as graphics engines.

Data-level parallelism provides significant performance improvements in a variety of useful situations.
So current and future ISAs will almost certainly include support for vector operations.

Multicore Processors

Multicore Processors

If applications have a lot of parallelism, using a larger
number of simpler cores is more efficient!
High-perf,

expensive
/
core

Cost/perf curve of
possible core designs

)

Cost (area, energy.

Performance

Figure 14.

In discussing out-of-order superscalar pipelined CPUs we commented that the costs grow very quickly
relative the to performance gains, leading to the cost-performance curve shown here. If we move down
the curve, we can arrive at more efficient architectures that give, say, 1/2 the performance at a 1/4 of

the cost.

When our applications involve independent computations that can be performed in a parallel, it may
be that we would be able to use two cores to provide the same performance as the original expensive
core, but a fraction of the cost. If the available parallelism allows us to use additional cores, we’ll see
a linear relationship between increased performance vs. increased cost. The key, of course, is that
desired computations can be divided into multiple tasks that can run independently, with little or no
need for communication or coordination between the tasks.

Whatis the optimal tradeoff between core cost and the number of cores? If our computation is arbitrarily
divisible without incurring additional overhead, then we would continue to move down the curve until
we found the cost-performance point that gave us the desired performance at the least cost. In reality,
dividing the computation across many cores does involve some overhead, e.g., distributing the data

15

Computation Structures - Lecture 21

and code, then collecting and aggregating the results, so the optimal tradeoff is harder to find. Still,
the idea of using a larger number of smaller, more efficient cores seems attractive.

Amdahl’s Law

Amdahl’s Law

¢ Speedup: timewithout enhancement / t].'rnewith enhancement
*« Suppose an enhancement speeds up a fraction f of
a task by a factor of S

time, ., = timeg4'((1-f) + £/S)
Soverall = til’neold / timenew =1 / ((l_f) + f/S)

timegy

time, .,

| (1-1) | o5

Corollary: Make the common case fast

(-9

Figure 15.

Many applications have some computations that can be performed in parallel, but also have computa-
tions that won’t benefit from parallelism. To understand the speedup we might expect from exploiting
parallelism, it’s useful to perform the calculation proposed by computer scientist Gene Amdahlin 1967,
now known as Amdahl’s Law.

Suppose we’re considering an enhancement that speeds up some fraction F of the task at hand by a
factor of S. As shown in the figure, the gray portion of the task now takes F/S of the time that it used to

require.

Some simple arithmetic lets us calculate the overall speedup we get from using the enhancement. One
conclusion we can draw is that we’ll benefit the most from enhancements that affect a large portion of
the required computations, i.e., we want to make F as large a possible.

16

Computation Structures - Lecture 21

Amdahl’s Law and Parallelism

Figure 16.

Amdahl’s Law and Parallelism

What is the maximum speedup you can get by
running on a multicore machine?

Soverall =1 / ((l_f) + f/S)

Soverall %’ 1 / (l_ﬂ

Say you write a program that can do 90% of the work
in parallel, but the other 10% is sequential

f=0.9, S=0 > S_,cran = 10
What f do you need to use a 1000-core machine well?

S =500 - f=0.998

overall —

What’s the best speedup we can hope for if we have many cores that can be used to speed up the
parallel part of the task? Here’s the speedup formula based on F and S, where in this case F is the

parallel fraction of the task. If we assume that the parallel fraction of the task can be speed up arbitrarily

by using more and more cores, we see that the best possible overall speed upis 1/(1 — F).

For example, you write a program that can do 90% of its work in parallel, but the other 10% must be

done sequentially. The best overall speedup that can be achieved is a factor of 10, no matter how many

cores you have at your disposal.

Turning the question around, suppose you have a 1000-core machine which you hope to be able to use

to achieve a speedup of 500 on your target application. You would need to be able parallelize 99.8% of

the computation in order to reach your goal! Clearly multicore machines are most useful when the

target task has lots of natural parallelism.

17

Computation Structures - Lecture 21

Thread-Level Parallelism

Thread-Level Parallelism

* Divide computation among multiple threads of
execution
— Each thread executes a different instruction stream

— More flexible than vector processing, but more expensive

+ Communication models:

— Shared memory:
» Single address space ? e ?
» Implicit communication by
memory loads & stores

— Message passing:

» Separate address spaces
» Explicit communication by ? ? ?

sending and receiving messages

Figure 17.

Using multiple independent cores to execute a parallel task is called thread-level parallelism (TLP),
where each core executes a separate computation “thread”. The threads are independent programs,
so the execution model is potentially more flexible than the lock-step execution provided by vector
machines.

When there are a small number of threads, you often see the cores sharing a common main memory,
allowing the threads to communicate and synchronize by sharing a common address space. We’ll
discuss this further in the next section. This is the approach used in current multicore processors,
which have between 2 and 12 cores.

Shared memory becomes a real bottleneck when there 10’s or 100’s of cores, since collectively they
quickly overwhelm the available memory bandwidth. In these architectures, threads communicate
using a communication network to pass messages back and forth. We discussed possible network
topologies in an earlier lecture. A cost-effective on-chip approach is to use a nearest-neighbor mesh
network, which supports many parallel point-to-point communications, while still allowing multi-hop
communication between any two cores. Message passing is also used in computing clusters, where
many ordinary CPUs collaborate on large tasks. There’s a standardized message passing interface (MPI)
and specialized, very high throughput, low latency message-passing communication networks (e.g.,
Infiniband) that make it easy to build high-performance computing clusters.

18

Computation Structures - Lecture 21

Multicore Caches

Multicore Caches

* Multicores have multiple private caches for performance
* We want the semantics of a single shared memory

Main Memory (x=1,y=2)
Memory

" EaEmEaEs

Consider the following trivial threads running on Cy and C;:

Thread A (Cy) Thread B (C,)
x =3, y=4
print(y); print(x);

Figure 18.

A conceptual schematic for a multicore processor is shown below. To reduce the average memory
access time, each of the four cores has its own cache, which will satisfy most memory requests. If
there’s a cache miss, a request is sent to the shared main memory. With a modest number of cores and
a good cache hit ratio, the number of memory requests that must access main memory during normal
operation should be pretty small. To keep the number of memory accesses to a minimum, the caches
implement a write-back strategy, where ST instructions update the cache, but main memory is only
updated when a dirty cache line is replaced.

Our goal is that each core should share the contents of main memory, i.e., changes made by one core
should visible to all the other cores. In the example shown here, core 0 is running Thread A and core 1
is running Thread B. Both threads reference two shared memory locations holding the values for the
variables X and Y.

The current values of Xand Y are 1 and 2, respectively. Those values are held in main memory as well
as being cached by each core.

19

Computation Structures - Lecture 21

What Are the Possible Outcomes

What Are the Possible Outcomes?

Thread A Thread B
x=3; y=4
print(y); print(x);

$:x=%3 $oix=1
y=2 y=%4

Plausible execution sequences:

SEQUENCE A prints B prints Hey, we get the

x=3; print(y); y=4; print(x); 1
x=3; y=4; print(y); print(x);
x=3; y=4; print(x); print(y);
y=4; x=3; print(x); print(y);
y=4; x=3; print(y); print(x);
y=4; print(x); x=3; print(y);

NNNNNN
e

Figure 19.

same answer
every time.. Let’s
go build it!

What happens when the threads are executed? Each thread executes independently, updating its

cache during stores to X and Y. For any possible execution order, either concurrent or sequential, the

result is the same: Thread A prints “2”, Thread B prints “1”. Hardware engineers would point to the

consistent outcomes and declare victory!

But closer examination of the final system state reveals some problems. After execution is complete,

the two cores disagree on the values of Xand Y. Threads running on core 0 will see X=3 and Y=2. Threads

running on core 1 will see X=1 and Y=4. Because of the caches, the system isn’t behaving as if there’s

a single shared memory. On the other hand, we can’t eliminate the caches since that would cause

the average memory access time to skyrocket, ruining any hoped-for performance improvement from

using multiple cores.

20

Computation Structures - Lecture 21

Uniprocessor Outcome

Uniprocessor Outcome

But, what are the possible outcomes if we ran Thread A and
Thread B on a single timed-shared processor?

Thread A Thread B

x=3; y=4

print(y); print(x);
Notice that

Plausible Uniprocessor execution sequences: the outcome

2, 1 does not

SEQUENCE A prints B prints appear in
this list!

x=3; print(y); y=4; print(x);
x=3; y=4; print(y); print(x);
x=3; y=4; print(x); print(y);
y=4; x=3; print(x); print(y);
y=4; x=3; print(y); print(x);
y=4; print(x); x=3; print(y);

NN N
=W WwWwww

Figure 20.

What outcome should we expect? One plausible standard of correctness is the outcome when the
threads are run a single timeshared core. The argument would be that a multicore implementation
should produce the same outcome but more quickly, with parallel execution replacing timesharing.

The table shows the possible results of the timesharing experiment, where the outcome depends on
the order in which the statements are executed. Programmers will understand that there is more than
one possible outcome and know that they would have to impose additional constraints on execution
order, say, using semaphores, if they wanted a specific outcome.

Notice that the multicore outcome of 2,1 doesn’t appear anywhere on the list of possible outcomes
from sequential timeshared execution.

21

Computation Structures - Lecture 21

Sequential Consistency

Sequential Consistency

Semantic constraint:

Result of executing N parallel threads should correspond to
some interleaved execution on a single processor.

[Shared Memory]

int x=1, y=2;
Thread A Thread B
. Weren't
x=3 y=4 caches
print(y); print(x);

supposed to

be invisible

Possible printed values: 2, 3; 4, 3; 4, 1. to programs?
(each corresponds to at least one interleaved execution)

IMPOSSIBLE printed values: 2, 1
(corresponds to NO valid interleaved execution).

Figure 21.

The notion that executing N threads in parallel should correspond to some interleaved execution of

those threads on a single core is called “sequential consistency”. If multicore systems implement

sequential consistency, then programmers can think of the systems as providing hardware-accelerated

timesharing.

So, our simple multicore system fails on two accounts. First, it doesn’t correctly implement a shared

memory since, as we’ve seen, it’s possible for the two cores to disagree about the current value of

a shared variable. Second, as a consequence of the first problem, the system doesn’t implement

sequential consistency.

Clearly, we’ll need to figure out a fix!

22

Computation Structures - Lecture 21

Alternatives to Sequential Consistency?

Alternatives to Sequential Consistency?

ALTERNATIVE MEMORY SEMANTICS:
“WEAK” consistency

EASIER GOAL: Memory operations from each thread appear to
be performed in order issued by that thread ;

Memory operations from different threads may overlap in
arbitrary ways (not necessarily consistent with any
interleaving).

ALTERNATIVE APPROACH:

*« Weak consistency, by default;

« MEMORY BARRIER instruction: stalls thread until all
previous memory operations have completed.

See
for a very readable discussion of memory semantics in multicore systems.

Figure 22.

One possible fix is to give up on sequential consistency. An alternative memory semantics is “weak
consistency”, which only requires that the memory operations from each thread appear to be performed
in the order issued by that thread. In other words in a weakly consistent system, if a particular thread
writes to X and then writes to Y, the possible outcomes from reads of X and Y by any thread would be
one of

+ (unchanged X, unchangedY), or
+ (changed X, unchanged), or
+ (changed X, changed).

But no thread would see changed Y but unchanged X.

In a weakly consistent system, memory operations from other threads may overlap in arbitrary ways
(not necessarily consistent with any sequential interleaving).

Note that our multicore cache system doesn’t itself guarantee even weak consistency. A thread that
executes “write X; write Y” will update its local cache, but later cache replacements may cause the
updated Y value to be written to main memory before the updated X value. To implement weak consis-
tency, the thread should be modified to “write X; communicate changes to all other processors; write
Y”. In the next section, we’ll discuss how to modify the caches to perform the required communication

automatically.

Out-of-order cores have an extra complication since there’s no guarantee that successive ST instructions
will complete in the order they appeared in the program. These architectures provide a BARRIER

23

Computation Structures - Lecture 21

instruction that guarantees that memory operations before the BARRIER are completed before memory
operation executed after the BARRIER.

There are many types of memory consistency - each commercially-available multicore system has its
own particular guarantees about what happens when. So the prudent programmer needs to read the
ISA manual carefully to ensure that her program will do what she wants. See the referenced PDF file for
a very readable discussion about memory semantics in multicore systems.

Fix: “Snoopy” Cache Coherence Protocol

Fix: “Snoopy” Cache Coherence Protocol

Idea: Have caches communicate over shared bus, letting
other caches know when a shared cached value changes

Main Memory (x=1,y=2)
“Snoopy”

Goal: minimize contention for snoopy bus by communicating
only when necessary, i.e., when there’s a shared value.

Figure 23.

The problem with our simple multicore system is that there is no communication when the value of
a shared variable is changed. The fix is to provide the necessary communications over a shared bus
that’s watched by all the caches. A cache can then “snoop” on what’s happening in other caches and
then update its local state to be consistent. The required communications protocol is called a “cache
coherence protocol”.

In designing the protocol, we’d like to incur the communications overhead only when there’s actual
sharing in progress, i.e., when multiple caches have local copies of a shared variable.

24

Computation Structures - Lecture 21

Example: MESI Cache Coherence Protocol

Example: MESI Cache Coherence Protocol

Cache line: | State ‘ Tag ‘ Data |

* Modified The cache line is present only in the current cache, and
is dirty; it has been modified from the value in main memory. The
cache is required to write the data back to main memory at some
time in the future, before permitting any other read of the (no
longer valid) main memory state.

* Exclusive The cache line is present only in the current cache, but
is clean; it matches main memory. It may be changed to the
Shared state at any time, in response to a bus read request.
Alternatively, it may be changed to the Modified state when writing
to it.

+ Shared Indicates that this cache line may be stored in other
caches of the machine and is clean; it matches the main memory.
The line may be discarded (changed to the Invalid state) at any
time. Writes to SHARED cache lines get special handling...

» Invalid Indicates that this cache line is invalid (unused).

https://en.wikipedia.org/wiki/MESI_protocol

Figure 24.

To implement a cache coherence protocol, we’ll change the state maintained for each cache line.

Theinitial state for all cache lines is INVALID indicating that the tag and data fields do not contain up-to-
date information. This corresponds to setting the valid bit to 0 in our original cache implementation.

When the cache line state is EXCLUSIVE, this cache has the only copy of those memory locations and
indicates that the local data is the same as that in main memory. This corresponds to setting the valid
bit to 1 in our original cache implementation.

If the cache line state is MODIFIED, that means the cache line data is the sole valid copy of the data.
This corresponds to setting both the dirty and valid bits to 1 in our original cache implementation.

To deal with sharing issues, there’s a fourth state called SHARED that indicates when other caches may
also have a copy of the same unmodified memory data.

When filling a cache from main memory, other caches can snoop on the read access and participate if
fulfilling the read request.

If no other cache has the requested data, the data is fetched from main memory and the requesting
cache sets the state of that cache line to EXCLUSIVE.

If some other cache has the requested in line in the EXCLUSIVE or SHARED state, it supplies the data
and asserts the SHARED signal on the snoopy bus to indicate that more than one cache now has a copy
of the data. All caches will mark the state of the cache line as SHARED.

If another cache has a MODIFIED copy of the cache line, it supplies the changed data, providing the
correct values for the requesting cache as well as updating the values in main memory. Again the

25

Computation Structures - Lecture 21

SHARED signal is asserted and both the reading and responding cache will set the state for that cache
line to SHARED.

So, at the end of the read request, if there are multiple copies of the cache line, they will all be in the
SHARED state. If there’s only one copy of the cache line it will be in the EXCLUSIVE state.

Writing to a cache line is when the sharing magic happens. If there’s a cache miss, the first cache
performs a cache line read as described above. If the cache line is now in the SHARED state, a write
will cause the cache to send an INVALIDATE message on the snoopy bus, telling all other caches to
invalidate their copy of the cache line, guaranteeing the local cache now has EXCLUSIVE access to the
cache line. If the cache line is in the EXCLUSIVE state when the write happens, no communication is
necessary. Now the cache data can be changed and the cache line state set to MODIFIED, completing
the write.

This protocol is called “MESI” after the first initials of the possible states. Note that the valid and dirty
state bits in our original cache implementation have been repurposed to encode one of the four MESI
states.

The key to success is that each cache now knows when a cache line may be shared by another cache,
prompting the necessary communication when the value of a shared location is changed. No attempt is
made to update shared values, they’re simply invalidated and the other caches will issue read requests
if they need the value of the shared variable at some future time.

The Cache Has Two Customers!

The Cache Has Two Customers!

Queue up write misses,
& STORE_BARRIER inst

Read waits until store queue
CPU . ;
Write —» [Sarequme] < - 5 empy
Cache line: ‘ State ‘ Tag | Data
Queue up invalidates,
Read READ_BARRIER inst

waits until invalidate
queue is empty

Snoopy bus erte

Read w/ intent to modify

Flags:
shared

Figure 25,

26

Computation Structures - Lecture 21

To support cache coherence, the cache hardware has to be modified to support two request streams:
one from the CPU and one from the snoopy bus.

The CPU side includes a queue of store requests that were delayed by cache misses. This allows the
CPU to proceed without having to wait for the cache refill operation to complete. Note that CPU read
requests will need to check the store queue before they check the cache to ensure the most-recent
value is supplied to the CPU. Usually there’s a STORE_BARRIER instruction that stalls the CPU until
the store queue is empty, guaranteeing that all processors have seen the effect of the writes before
execution resumes.

On the snoopy-bus side, the cache has to snoop on the transactions from other caches, invalidating or
supplying cache line data as appropriate, and then updating the local cache line state. If the cache is
busy with, say, a refill operation, INVALIDATE requests may be queued until they can be processed.
Usually there’s a READ_BARRIER instruction that stalls the CPU until the invalidate queue is empty,

guaranteeing that updates from other processors have been applied to the local cache state before
execution resumes.

Note that the “read with intent to modify” transaction shown here is just protocol shorthand for a READ
immediately followed by an INVALIDATE, indicating that the requester will be changing the contents
of the cache line.

MESI Activity Diagram

MESI Activity Diagram

won) Intel adds " e
h ° state to
choose which [~
cache —_—
- n o ragpcm:\s R ‘ — “}
[ey [

CCO: hteps://en.wikipedia.org/wiki/MESI_protocol#/media/File:MES|_protocol_activity_diagram.png

Figure 26.

How do the CPU and snoopy-bus requests affect the cache state? Here in micro type is a flow chart
showing what happens when. If you’re interested, try following the actions required to complete

27

Computation Structures - Lecture 21

various transactions.

Intel, in its wisdom, adds a fifth “F” state, used to determine which cache will respond to read request
when the requested cache line is shared by multiple caches - basically it selects which of the SHARED
cache lines gets to be the responder.

But this is a bit abstract. Let’s try the MESI cache coherence protocol on our earlier example!

Cache Coherence in Action

Cache Coherence in Action

Thread A Thread B
0O x-3 Qyv-4
@ printy); @ print(x);
[$o:[S]x =1, [S]y =2] [$:i:[S1x=1,[S]y=2 |

1. x =3 — $, sends invalidate x, update cache
[$:M]x=3,[Sly=2| [$:Bly=2 |

2.y =4 — $, sends invalidate y, update cache
[SeMx=3 | _ SuMy=4 |

3. print(x) — $; read x, $, responds with Shared flag, update mem
\ $0:[S] x =3 | [$:[S]x=3, M]y=4]

4. print(y) — $, read y, $, responds with Shared flag, update mem
[$0:S1x=3, [Sly = 4 | [$::[S]x=3,[Sly=4]

Figure 27.

Here are our two threads and their local cache states indicating that values of locations X and Y are
shared by both caches. Let’s see what happens when the operations happen in the order (1 through 4)
shown here. You can check what happens when the transactions are in a different order or happen
concurrently.

« First, Thread A changes X to 3. Since this location is marked as SHARED [S] in the local cache, the
cache for core 0 ($o) issues an INVALIDATE transaction for location X to the other caches, giving it
exclusive access to location X, which it changes to have the value 3. At the end of this step, the
cache for core 1 ($1) no longer has a copy of the value for location X.

+ Instep 2, Thread B changes Y to 4. Since this location is marked as SHARED in the local cache,
cache lissues an INVALIDATE transaction for location Y to the other caches, giving it exclusive
access to location Y, which it changes to have the value 4.

« In step 3, execution continues in Thread B, which needs the value of location X. That’s a cache
miss, so it issues a read request on the snoopy bus, and cache 0 responds with its updated value,

28

Computation Structures - Lecture 21

and both caches mark the location X as SHARED. Main memory, which is also watching the snoopy
bus, also updates its copy of the X value.

« Finally, in step 4, Thread A needs the value for Y, which results in a similar transaction on the
snoopy bus.

Note the outcome corresponds exactly to that produced by the same execution sequence on a time-
shared core since the coherence protocol guarantees that no cache has an out-of-date copy of a shared
memory location. And both caches agree on the ending values for the shared variables X and V.

If you try other execution orders, you’ll see that sequential consistency and shared memory semantics
are maintained in each case. The cache coherency protocol has done its job!

Parallel Processing Summary

Parallel Processing Summary

Prospects for future CPU architectures:

Pipelining - Well understood, but mined-out
Superscalar - At its practical limits
Vector/GPU - Useful for special applications

Prospects for future Computer System architectures
Single-thread limits: forcing multicores, parallelism

Brains work well, with dismal clock
rates ... parallelism? \

Needed: NEW models, NEW ideas, NEW approaches

FINAL ANSWER: It’s up to YOUR generation!

Figure 28.

Let’s summarize our discussion of parallel processing.

At the moment, it seems that the architecture of a single core has reached a stable point. At least with
the current ISAs, pipeline depths are unlikely to increase and out-of-order, superscalar instruction
execution has reached the point of diminishing performance returns. So it seems unlikely there
will be dramatic performance improvements due to architectural changes inside the CPU core. GPU
architectures continue to evolve as they adapt to new uses in specific application areas, but they are
unlikely to impact general-purpose computing.

At the system level, the trend is toward increasing the number of cores and figuring out how to best
exploit parallelism with new algorithms.

29

Computation Structures - Lecture 21

Looking further ahead, notice that the brain is able to accomplish remarkable results using fairly
slow mechanisms (it takes ~.01 seconds to get a message to the brain and synapses fire somewhere
between 0.3 to 1.8 times per second). Is it massive parallelism that gives the brain its “computational”
power? Or is it that the brain uses a different computation model, e.g., neural nets, to decide upon
new actions given new inputs? At least for applications involving cognition there are new architectural
and technology frontiers to explore. You have some interesting challenges ahead if you get interested
in the future of parallel processing!

30

	Course Contents
	Processor Performance
	5-Stage Pipelined Processors
	Improving 5-Stage Pipeline Performance
	Limits to Pipeline Depth
	Improving 5-Stage Pipeline Performance
	Instruction-level Parallelism (ILP)
	Wider or Superscalar Pipelines
	A Modern Out-of-Order Superscalar Processor
	Limits to Single-Processor Performance
	Data-Level Parallelism
	Vector Code Example
	Data-Dependent Vector Operations
	Vector Processing Implementations
	Multicore Processors
	Amdahl’s Law
	Amdahl’s Law and Parallelism
	Thread-Level Parallelism
	Multicore Caches
	What Are the Possible Outcomes
	Uniprocessor Outcome
	Sequential Consistency
	Alternatives to Sequential Consistency?
	Fix: “Snoopy” Cache Coherence Protocol
	Example: MESI Cache Coherence Protocol
	The Cache Has Two Customers!
	MESI Activity Diagram
	Cache Coherence in Action
	Parallel Processing Summary

