Name: ANSWERS Athena username:

5fion, 6.004 Worksheet
'rl*ﬂt'-'-'fﬁ rES L20 — Synchronization

Semaphores (Dijkstra)

Semaphores for Precedence

Programming construct for synchronization: semaphore s = ©;
— NEW DATA TYPE: semaphore, an integer 2 0

semaphore s = K; // initialize s to K

Process A Process B

— NEW OPERATIONS (defined on semaphores): Al; B1;

- wait(semaphore s)

wait until s > 0, thens =s - 1 A2; B2;
- signal(semaphore s) signal(s);
s =s + I (one WAITing process may now be able to proceed) A3; \‘ B3;
wait(s);
— SEMANTIC GUARANTEE: A semaphore s initialized to K Ad; B4;
enforces the constraint:
Often you will see o This is a precedence AS; BS;

P(s) used for wait(s)

and : :
V(s) used for signal(s)! Slgn'al(s)i & Walt(s)i+K
P = “proberen” (test) or
“pakken”(grab)

V= “verhogen”(increase)

Semaphores for Resource Allocation

Abstract problem:
* POOL of K resources

* Many processes, each needs resource for occasional

uninterrupted period

relationship: the i
call to signal must
complete before the
the (i+K)™ call to wait
will succeed.

semaphore lock = 1;

Debit(int account, int amount)
wait{lock); [/ Wait for exclusive

t = balance[account];

* MUST guarantee that at most K resources are in use at any time, balance[account] = t - amount;

Semaphore Solution:

In shared memory:
semaphore s = K; // K resources

Using resources:
wait(s); // Allocate a resource
/f use it for a while
signal(s); // return it to pool

signal(lock); // Finished with lock

Goal: want statement A2
in process A to complete
before statement B4 in
Process B begins.

Recipe:

+ Declare semaphore = 0

+ signal(s) at start of arrow
+ wait(s) at end of arrow

Semaphores for Mutual Exclusion

“a precedes b
or

b precedes a”"
fi.e., they don’t overlap)

access

RESOURCE managed by “lock” semaphore:

Access to critical section

Invariant: Semaphore value = number of resources left in pool

Dealing With Deadlocks

Cooperating processes:

— Establish a fixed ordering to shared resources and require

all requests to be made in the prescribed order

Transfer{int accountl, int account2, int ameount) {
int a = min{accountl, accountl};
int b = max(accountl, account2);
walt(lock[a]);
walt(lock[b]);
balance[accountl] = balance[accountl] - amount;
balance[account2] = balance[account2] + amount;
signal(lock[b]);
signal{lock[a]);

Unconstrained processes:

- O /8 discovers circular wait & kills waiting process

- Transaction model
- Hard problem

6.004 Worksheet

Look up "database”
on Wikipedia to

ISSUES: learn about systems
Granularity of lock that support
1 lock for whole balance database? efficient
1 lock per account? transactions on
1 lock for all accounts ending in 004 shared data,
Summary

Communication among parallel threads or

execution

I
Transfer|6004, 6005, 50) Deadlock:

asynchronous processes requires synchronization....
,@' — Precedence constraints: a partial ordering among operations
#1

_‘\: (&) — Semaphores as a mechanism for enforcing precedence
o constraints
T — Mutual exclusion (critical sections, atomic transactions) as a
j——\ common compound precedence constraint
Tranalcia03, 8004, B0 - Solving Mutual Exclusion via binary semaphores

— Synchronization serializes operations, limits parallel

Many alternative synchronization mechanisms exist!

— Consequence of undisciplined use of synchronization

mechanism
— Can be avoided in special cases
others

, detected and corrected in

-1of8§- L20 -- Synchronization

Problem 1.

Schro Dinger has a company that produces pairs of entangled particles, which are then packaged
and sent to manufacturers of quantum computers. Since it’s a complicated process, there are
multiple machines that produce particle pairs; each machine runs the Producer code shown below.

The completed particle pairs are placed in the particle buffer, where they take up 2 of the buffer
locations. There’s a single packaging machine that takes a particle pair from the particle buftfer
and prepares it for shipment; the packing machine runs the Consumer code shown below.

To prevent any violations of the boundary conditions the following rules must be followed:

1.

A production machine can only place a particle pair in the buffer if there are two spaces
available.

The particle pair must be stored in consecutive buffer locations, i.e., a particle from some
other production machine can’t appear between the particles that make up the pair.

The capacity of the buffer (100 particles, or 50 particle pairs) can’t be exceeded.

The packaging machine breaks if it accesses the buffer and finds it empty — it should only
proceed when there are at least two particles in the buffer.

Schro has heard of semaphores but is unsure how to use them to ensure the rules are followed.

Please insert the appropriate semaphores, WAITs, and SIGNALSs into the Producer and
Consumer code to ensure correct operation and to prevent deadlock.

* Be sure to indicate initial values for any semaphores you use.
* Remember: there are multiple producers and a single consumer!
For full credit, use a minimum number of semaphores and don’t introduce unnecessary
precedence constraints.
Shared Memory
particle buffer[100]; // holds 100 particles
Semaphores and initial values: on’ S=5O’ M=1
Producer Consumer
PLoop: CLoop:
WAIT(P)
Produce pair P1, P2 Fetch P1 from buffer
WAIT(S); WAIT(M)
Place P1 in buffer Fetch P2 from buffer
SIGNAL(S)
Place P2 in buffer Package and ship
SIGNAL(M); SIGNAL(P)
Go to PLoop Go to ClLoop

P = # of particle pairs in buffer, enforces rule 4

S = # of pair spaces in buffer, enforces rules 1 and 3

M = mutual exclusion lock, enforces rule 2 (when there are multiple producers)

6.004 Worksheet -20of8§- L20 -- Synchronization

Problem 2.

The following three processes are run on a shared processor. They can coordinate their execution
via shared semaphores that respond to the standard signal(S) and wait(S) procedures. Their intent
is to print the word HELLO. Assume that execution may switch between any of the three
processes at any point in time.

Process 1 Process 2 Process 3

Loopl: print(“H”) Loop2: print(“L”) Loop3: print(“0”)
print(“E”) goto Loop2 goto Loop3
goto Loopl

(A) Assuming that no semaphores are being used, for each of the following sequences of
characters, specify whether or not this system could produce that output.

LEHO (YES/NO): NO HLOE (YES/NO): Y €S LOL (YES/NO): V€S
Need H before E

(B) You would like to ensure that only the sequence HELLO can be printed and that it will be
printed exactly once. Add any missing wait(S) and signal(S) calls to the code below (where
S is one of a, b or ¢) to ensure that the three processes can only print HELLO exactly once.
Remember to specify the initial value for each of your semaphores. Recall that semaphores
cannot be initialized to negative numbers.

Semaphores: a = 1_; b = O_; C =O 5

Process 1 Process 2 Process 3
Loop1l: Loop2: Loop3:
wait(a) wait(b) wait(c)
wait(c)
print(“H”) print(“L”) print(“0”)
print(“E”) signal(c)
signal(b)
signal(b)
goto Loopl goto Loop2 goto Loop3

6.004 Worksheet -30of§- L20 -- Synchronization

Problem 3.

The following pair of processes share the variable counter, which has been given an initial
value of 10 before execution of either process begins:

Process A Process B
Al: LD(counter,R0) Bl: LD(counter,R0)
ADDC(R®,1,R0) ADDC (RO, 2,R0)

A2: ST(R@,counter) B2: ST(R@,counter)

(A) If Processes A and B are run on a timesharing system, there are six possible orders in which
the LD and ST instructions might be executed. For each of the orderings, please give the
final value of the counter variable.

Al A2 Bl B2: counter=__ 13 BI Al B2 A2: counter = L1
Al B1 A2 B2: counter = 12 B1 A1 A2 B2: counter = 12
Al B1 B2 A2: counter= 11 B1 B2 A1 A2: counter = 13

In the following two questions you are asked to modify the original programs for processes A and
B by adding the minimum number of semaphores and signal and wait operations to guarantee that
the final result of executing the two processes will be a specific value for counter. Give the initial
values for every semaphore you introduce. For full credit, your solution should allow all
execution orders that result in the required value.

(B) Add semaphores (with initial values) so that the final value of counter is 12.

Semaphores: X=0, Y=0

Process A Process B

Al: LD(counter,RO) B1: LD(counter,R0)
ADDC (RO, 1,R0) ADDC (RO %,RO) .
wait(x) signal(X); wait(y)

A2: ST(R@,counter) B2: ST(R®,counter)
signal(y)

(C) Add semaphores (with initial values), so that the final value of counter is not 13.

Semaphores: X=@J Y=0

Process A Process B

Al: LD(counter,R0) B1: LD(counter,R0)
signal(x) signal(y)
ADDC(R®, 1,R0) ADDC (R®,2,R0)
wait(y) wa1t(x§

A2: ST(Re@,counter) B2: ST(R@,counter)

6.004 Worksheet -4 of 8§ - L20 -- Synchronization

Problem 4.

P1 and P2 are processes that run concurrently. P1 has two sections of code where section A is
followed by section B. Similarly, P2 has two sections: C followed by D. Within each process
execution proceeds sequentially, so we are guaranteed that A < B, i.e., A precedes B. Similarly,
we know that C < D. There is no looping; each process runs exactly once. You will be asked to
add semaphores to the programs — you may need to use more than one semaphore. Please give
the initial values of any semaphores you use. For full credit use a minimum number of
semaphores and don’t introduce any unnecessary precedence constraints.

(A) Please add WAITY(...) and SIGNAL(...) statements as needed in the spaces below so that the
precedence constraint B < C is satisfied, i.e., execution of P1 finishes before execution of

P2 begins.
Add WAIT and SIGNAL statements so that B < C

Semaphore initial values: 5=0
Process P1 Process P2
wait(S)
...Section A code... ... Section C code...
...Section B code... ...Section D code...
signal(S)

(B) Please add WAITY(...) and SIGNALY...) statements as needed in the spaces below so that D
< A or B <, i.e., executions of P1 and P2 cannot overlap, but are allowed to occur in

either order.
Add WAIT and SIGNAL statements so that D < AorB<C

Semaphore initial values: M=1
Process P1 Process P2
wait(M) wait (M)
...Section A code... ... Section C code...
...Section B code... ...Section D code...
signal(M) signal(M)

6.004 Worksheet -50f8§- L20 -- Synchronization

(C) Please add WAITY(...) and SIGNALY...) statements as needed in the spaces below so that A
=< D and C < B, i.e., the first section (A and C) of both processes completes execution

before the second section (B or D) of either process begins execution.

6.004 Worksheet

Add WAIT and SIGNAL statements so that A < Dand C <B

Semaphore initial values: 5=0, T=0

Process P1

...Section A code...

signal(S)
wait(T)

...Section B code...

Process P2

.. Section C code...

signal(T)
wait(S)

...Section D code...

-60f8-

L20 -- Synchronization

Problem 5.

Upper floor

The MIT Safety Office is worried about congestion on stairs
and has decided to implement a semaphore-based traffic-
control system. Most connections between floors have two
flights of stairs with an intermediate landing (see figure).
The constraints the Safety Office wishes to enforce are

Landing

Lower floor
Only 1 person at a time on each flight of stairs

A maximum of 3 persons on a landing
As a few traffic constraints as possible
No deadlock (a particular concern if there’s bidirectional travel)

Assume stair traffic is unidirectional: once on a flight of stairs, people continue up or down until
they’ve reached their destination floor (no backing up!), although they may pause at the landing.

There are three semaphores: they control the upper flight of stairs (SU), the landing (L), and the
lower flight of stairs (SL). Please provide appropriate initial values for these semaphores and
add the necessary wait() and signal() calls to the Down() and Up() procedures below. Note that
the Down() and Up() routines will be executed by many students simultaneously and the
semaphores are the only way their code has of interacting with other instances of the Down() and
Up() routines. To get full credit your code must avoid deadlock and enforce the stair and landing
occupancy constraints. Hint: for half credit, implement a solution where only 1 person at time is
in-between floors (but be careful of deadlock here too!).

// Semaphores shared by all students, provide initial values

1 1 3

semaphore SU = , SL =

, L= ;

// code for going downstairs

Exit Sli/fg[cjsr‘ landing;

Down() { up() {
wait(L) wait(L)
wait(SU) wait(SL)
Enter SU; Enter SL;

// code for going upstairs

Eg(iLénSaL_(ggEe)r‘ landing;

signa
wait(SL) wait(SU)
Exit landing/enter SL; Exit landing/enter SU;
signal(L) signal(L)
Exit SL; Exit SU;
signal(SL) signal(SU)

} }
6.004 Worksheet -7 0of 8§ - L20 -- Synchronization

Problem 6.

(A) Semaphore S is used to implement mutual exclusion on accesses to a shared buffer. No other
semaphores are used. What should its initial value be?
A value of 1 for S allows at most one WAIT to
succeed - others will stall until first one SIGNALSs.
This implements mutual exclusion.
(B) Indicate whether each of the following sets of semaphore-synchronized processes can
deadlock. The last two cases are variants of the first one; differences are underlined.

Initial value for S:

Initial semaphore values: sl =1, s2 =1, s3 =1
P1: P2: P3:
wait(sl); wait(s2); wait(sl);
wait(s2); wait(s3); wait(s2);
print(“1”); print(“2”); wait(s3);
signal(s2); signal(s3); print(“3”);
signal(sl); signal(s2); signal(s3);
signal(s2);
signal(sl);
Initial semaphore values: sl =1, s2 =1, s3 =1
P1: P2: P3:
wait(sl); wait(s2); wait(s2);
wait(s2); wait(s3); wait(s3);
print(“1”); print(“2”); wait(s1);
signal(s2); signal(s3); print(“3”);
signal(sl); signal(s2); signal(sl);
signal(s3);
signal(s2);
Initial semaphore values: s1I =2, s2 =1, s3 =1
P1: P2: P3:
wait(sl); wait(s2); wait(s2);
wait(s2); wait(s3); wait(s3);
print(“1”); print(“2”); wait(si);
signal(s2); signal(s3); print(“3”);
signal(sl); signal(s2); signal(sl);
signal(s3);
signal(s2);
6.004 Worksheet -8of 8-

1

Circle answers below

Uses a global ordering for
semaphores (S1 > S2 > S3). No
deadlock possible.

Can it deadlock?

YES Can’t tell

Deadlock scenario:
P1 holds S1, waiting on S2
P3 holds S2, waiting on S1

Can it deadlock?

@ NO Can’t tell

Now both WAIT(S1) statements
will succeed.

Can it deadlock?

YES Can’t tell

L20 -- Synchronization

