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Course Contents

Interprocess Communication

Interprocess Communication
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Figure 1.

It’s not unusual to find that an application is organized as multiple communicating processes. What’s
the advantage of using multiple processes instead of just a single process?

Many applications exhibit concurrency, i.e., some of the required computations can be performed in
parallel. For example, video compression algorithms represent each video frame as an array of 8-pixel
by 8-pixel macroblocks. Each macroblock is individually compressed by converting the 64 intensity
and color values from the spatial domain to the frequency domain and then quantizing and Huffman
encoding the frequency coefficients. If you’re using a multi-core processor to do the compression, you
can perform the macroblock compressions concurrently.

Applications like video games are naturally divided into the “front-end” user interface and “back-end”
simulation and rendering engines. Inputs from the user arrive asynchronously with respect to the
simulation and it’s easiest to organize the processing of user events separately from the backend
processing.

Processes are an effective way to encapsulate the state and computation for what are logically inde-
pendent components of an application, which communicate with one another when they need to
share information.

These sorts of applications are often data- or event-driven, i.e., the processing required is determined
by the data to be processed or the arrival of external events.
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How should the processes communicate with each other?

If the processes are running out of the same physical memory, it would be easy to arrange to share
memory data by mapping the same physical page into the contexts for both processes. Any data written
to that page by one process will be able to be read by the other process.

To make it easier to coordinate the processes’ communicating via shared memory, we’ll see it’s conve-
nient to provide synchronization primitives. Some ISAs include instructions that make it easy to do the
required synchronization.

Another approach is to add OS supervisor calls to pass messages from one process to another. Mes-
sage passing involves more overhead than shared memory, but makes the application programming
independent of whether the communicating processes are running on the same physical processor.

Inthis lecture, we’ll use the classic producer-consumer problem as our example of concurrent processes
that need to communicate and synchronize. There are two processes: a producer and a consumer. The
producer is running in a loop, which performs some computation to generate information, in this case,
a single character C. The consumer is also running a loop, which waits for the next character to arrive
from the producer, then performs some computation .

The information passing between the producer and consumer could obviously be much more com-
plicated than a single character. For example, a compiler might produce a sequence of assembly
language statements that are passed to the assembler to be converted into the appropriate binary
representation. The user interface front-end for a video game might pass a sequence of player actions
to the simulation and rendering back-end. In fact, the notion of hooking multiple processes together in
a processing pipeline is so useful that the Unix and Linux operating systems provide a PIPE primitive in
the operating system that connects the output channel of the upstream process to the input channel
of the downstream process.
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Synchronous Communication

Synchronous Communication
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Figure 2.

Let’s look at a timing diagram for the actions of our simple producer/consumer example. We’'ll use
arrows to indicate when one action happens before another. Inside a single process, e.g., the producer,
the order of execution implies a particular ordering in time: the first execution of xxx is followed by the
sending of the first character. Then there’s the second execution of xxx, followed by the sending of
the second character, and so on. In later examples, we’ll omit the timing arrows between successive
statements in the same program.

We see a similar order of execution in the consumer: thefirst character is received, then the computation
is performed for the first time, etc. Inside of each process, the process’ program counter is determining
the order in which the computations are performed.

So far, so good - each process is running as expected. However, for the producer/consumer system
to function correctly as a whole, we’ll need to introduce some additional constraints on the order
of execution. These are called “precedence constraints” and we’ll use this stylized less-than sign to
indicate that computation A must precede, i.e., come before, computation B.

In the producer/consumer system we can’t consume data before it’s been produced, a constraint we
can formalize as requiring that the i send operation has to precede the it" receive operation. This
timing constraint is shown as the solid red arrow in the timing diagram.

Assuming we’re using, say, a shared memory location to hold the character being transmitted from
the producer to the consumer, we need to ensure that the producer doesn’t overwrite the previous
character before it’s been read by the consumer. In other words, we require the ith receive to precede
the i+1% send. These timing constraints are shown as the dotted red arrows in the timing diagram.
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Together these precedence constraints mean that the producer and consumer are tightly coupled in
the sense that a character has to be read by the consumer before the next character can be sent by the
producer, which might be less than optimal if the and computations take a variable amount of time.
So let’s see how we can relax the constraints to allow for more independence between the producer
and consumer.

FIFO Buffering

FIFO Buffering
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OVERWRITE constraint to:
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Figure 3.

We can relax the execution constraints on the producer and consumer by having them communicate
via N-character first-in-first-out (FIFO) buffer. As the producer produces characters it inserts them into
the buffer. The consumer reads characters from the buffer in the same order as they were produced.
The buffer can hold between 0 and N characters. If the buffer holds 0 characters, it’s empty; if it holds N
characters, it’s full. The producer should wait if the buffer is full, the consumer should wait if the buffer
is empty.

Using the N-character FIFO buffer relaxes our second overwrite constraint to the requirement that the
it receive must happen before i+Nt"'send. In other words, the producer can get up to N characters
ahead of the consumer.

FIFO buffers areimplemented as an N-element character array with two indices: the read indexindicates
the next character to be read, the write index indicates the next character to be written. We’ll also need
a counter to keep track of the number of characters held by the buffer, but that’s been omitted from
this diagram. The indices are incremented modulo N, i.e., the next element to be accessed after the
N-1%t element is the 0" element, hence the name “circular buffer”.
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Here’s how it works. The producer runs, using the write index to add the first character to the buffer.
The producer can produce additional characters, but must wait once the buffer is full.

The consumer can receive a character anytime the buffer is not empty, using the read index to keep
track of the next character to be read. Execution of the producer and consumer can proceed in any
order so long as the producer doesn’t write into a full buffer and the consumer doesn’t read from any
empty buffer.

Example: Bounded Buffer Problem

Example: Bounded Buffer Problem

SHARED MEMORY

char buf[N]; /* The buffer */
int in=8, out=0;

/PRODUCER: CONSUMER:
send(char c){ char rcv(){
buf[in] = c; char c;
in = (in+1)% N; c = buf[out];
out = (out+l)% N;
return c;

Problem: Doesn’t enforce precedence constraints
(e.g. rev( ) could be invoked prior to any send)) )

Figure 4.

Here’s what the code for the producer and consumer might look like. The array and indices for the
circular buffer live in shared memory where they can be accessed by both processes. The SEND routine
in the producer uses the write index IN to keep track of where to write the next character. Similarly the
RCV routine in the consumer uses the read index OUT to keep track of the next character to be read.

After each use, each index is incremented modulo N.

The problem with this code is that, as currently written, neither of the two precedence constraints is
enforced. The consumer can read from an empty buffer and the producer can overwrite entries when
the buffer is full.

We’ll need to modify this code to enforce the constraints and for that we’llintroduce a new programming
construct that we’ll use to provide the appropriate inter-process synchronization.
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Semaphores (Dijkstra)

Semaphores (Dijkstra)

Programming construct for synchronization:

— NEW DATA TYPE: semaphore, an integer = 0
semaphore s = K; // initialize s to K

0 — NEW OPERATIONS (defined on semaphores):
- waijt(semaphore s)
wait until s > 0, thens =s -1
- signal(semaphore s)
s =s + 1 (one WAITing process may now be able to proceed)

— SEMANTIC GUARANTEE: A semaphore s initialized to K
enforces the constraint:

This is a precedence
-~ relationship: the ™
. . call to signal must
signal(s); < wait(s);;x complete before the
the (i+K)" call to wait
will succeed.

Often you will see
P(s) used for wait(s)
and
V(s) used for signal(s)!
P = “proberen”(test) or
“pakken”(grab)

V= “verhogen” (increase)

Figure 5.

What we’d like to do is to create a single abstraction that can be used to address all our synchronization
needs. In the early 1960’s, the Dutch computer scientist Edsger Dijkstra proposed a new abstract data
type called the semaphore, which has an integer value greater than or equal to 0. A programmer can
declare a semaphore as shown here, specifying its initial value. The semaphore lives in a memory
location shared by all the processes that need to synchronize their operation.

The semaphore is accessed with two operations: WAIT and SIGNAL. The WAIT operation will wait until
the specified semaphore has a value greater than 0, then it will decrement the semaphore value and
return to the calling program. If the semaphore value is 0 when WAIT is called, conceptually execution
is suspended until the semaphore value is non-zero. In a simple (inefficient) implementation, the WAIT
routine loops, periodically testing the value of the semaphore, proceeding when its value is non-zero.

The SIGNAL operation increments the value of the specified semaphore. If there any processes WAITing
on that semaphore, exactly one of them may now proceed. We’ll have to be careful with the implemen-
tation of SIGNAL and WAIT to ensure the “exactly one” constraint is satisfied, i.e., that two processes
both WAITing on the same semaphore won’t both think they can decrement it and proceed after a
SIGNAL.

A semaphore initialized with the value K guarantees that the it" call to SIGNAL will precede (i+K)™ call
to WAIT. In a moment, we’ll see some concrete examples that will make this clear. Note that in 6.004,
we’re ruling out semaphores with negative values.

In the literature, you may see P(s) used in place of WAIT(s) and V(s) used in place of SIGNAL(s). These
operation names are derived from the Dutch words for “test” and “increase”.
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Let’s see how to use semaphores to implement precedence constraints.

Semaphores for Precedence

Semaphores for Precedence

semaphore s = 0;
P Goal: want statement A2

in process A to complete
before statement B4 in
Al; B1; Process B begins.

signal(s);
A3; \ B3;
wait(s);

Process A Process B

A4; B4; Recipe:
Declare semaphore = 0
A5; B5; + signal(s) at start of arrow

wait(s) at end of arrow

Figure 6.

Here are two processes, each running a program with 5 statements. Execution proceeds sequentially
within each process, so Al executes before A2, and so on. But there are no constraints on the order of
execution between the processes, so statement B1 in Process B might be executed before or after any
of the statements in Process A. Even if A and B are running in a timeshared environment on a single
physical processor, execution may switch at any time between processes A and B.

Suppose we wish to impose the constraint that the execution of statement A2 completes before
execution of statement B4 begins. The red arrow shows the constraint we want.

Here’s the recipe for implementing this sort of simple precedence constraint using semaphores.

« First, declare a semaphore (called “s” in this example) and initialize its value to 0.

+ Place a call to signal(s) at the start of the arrow. In this example, signal(s) is placed after the
statement A2 in process A.

» Then place a call to wait(s) at the end of the arrow. In this example, wait(s) is placed before the
statement B4 in process B.

+ With these modifications, process A executes as before, with the signal to semaphore s happening

after statement A2 is executed.

Statements B1 through B3 also execute as before, but when the wait(s) is executed, execution of process
B is suspended until the signal(s) statement has finished execution. This guarantees that execution of

8
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B4 will start only after execution of A2 has completed.

By initializing the semaphore s to 0, we enforced the constraint that the first call to signal(s) had to
complete before the first call to wait(s) would succeed.

Semaphores for Resource Allocation

Semaphores for Resource Allocation

Abstract problem:
*« POOL of K resources

* Many processes, each needs resource for occasional
uninterrupted period

¢ MUST guarantee that at most K resources are in use at any time.
Semaphore Solution:

In shared memory:
semaphore s = K; // K resources

Using resources:
wait(s); // Allocate a resource
// use it for a while
signal(s); // return it to pool

Invariant: Semaphore value = number of resources left in pool

Figure 7.

Another way to think about semaphores is as a management tool for a shared pool of K resources,
where K is the initial value of the semaphore. You use the SIGNAL operation to add or return resources
to the shared pool. And you use the WAIT operation to allocate a resource for your exclusive use.

At any given time, the value of the semaphore gives the number of unallocated resources still available
in the shared pool.

Note that the WAIT and SIGNAL operations can be in the same process, or they may be in different
processes, depending on when the resource is allocated and returned.
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Bounded Buffer Problem with Semaphores

Bounded Buffer Problem
w/ Semaphores

SHARED MEMORY:

char buf[N]; /* The buffer */
int in=0, out=0;

semaphore chars=9;

/}RODUCER: CONSUMER:
send(char c) char rcv()
char c;
buf[in] = c; wait(chars);
in = (in+1)%N; c = bufl[out];
signal(chars); out = (out+1)%N; Does
return c; this
¥ work?
A

PRECEDENCE managed by semaphore: send; < rcv;
RESOURCE managed by semaphore chars: # of chars in buf

Figure 8.

We can use semaphores to manage our N-character FIFO buffer. Here we’ve defined a semaphore
CHARS and initialized it to 0. The value of CHARS will tell us how many characters are in the buffer.

So SEND does a signal (CHARS) after it has added a character to the buffer, indicating the buffer now
contains an additional character.

And RCV does a wait (CHARS) to ensure the buffer has at least one character before reading from the
buffer.

Since CHARS was initialized to 0, we’ve enforced the constraint that the ith call to signal(CHARS)
precedes the completion of the it call to wait (CHARS). In other words, RCV can’t consume a character
until it has been placed in the buffer by SEND.

Does this mean our producer and consumer are now properly synchronized? Almost! Using the CHARS
semaphore, we implemented one of the two precedence constraints we identified as being necessary
for correct operation. Next we’ll see how to implement the other precedence constraint.

10
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Flow Control Problems

Flow Control Problems

N-character
FIFO buffer

Q: What keeps PRODUCER from putting N+1 characters
into the N-character buffer?

A: Nothing.
Result: OVERFLOW.

WHAT we’ve got thus far: WHAT we still need:

send; < rcv; rev; < send;,y

Figure 9.

What keeps the producer from putting more than N characters into the N-character buffer? Nothing.
Oops, the producer can start to overwrite characters placed in the buffer earlier even though they
haven’t yet been read by the consumer. This is called buffer overflow and the sequence of characters
transmitted from producer to consumer becomes hopelessly corrupted.

What we’ve guaranteed so far is that the consumer can read a character only after the producer has
placed it in the buffer, i.e., the consumer can’t read from an empty buffer.

What we still need to guarantee is that the producer can’t get too far ahead of the consumer. Since the
buffer holds at most N characters, the producer can’t send the (i+N)" character until the consumer has
read the ith character.

11
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Bounded Buffer Problem with More Semaphores

Bounded Buffer Problem
w/ more Semaphores

SHARED MEMORY:

char buf[N]; /* The buffer */
int in=08, out=0;

semaphore chars=0, space=N;

PRODUCER: CONSUMER: I
send(char c) char rcv()
{
wait(space); char c;
buf[in] = c; wait(chars);
in = (in+1)%N; c = buf[out];
signal(chars); out = (out+1)%N;
} signal(space);
return c;
) J

Resources managed by semaphore: characters in FIFO,
spaces in FIFO. Works with single producer, consumer. But
what about multiple producers and consumers?

Figure 10.

Here we’ve added a second semaphore, SPACES, to manage the number of spaces in the buffer. Initially
the buffer is empty, so it has N spaces. The producer must WAIT for a space to be available. When
SPACES in non-zero, the WAIT succeeds, decrementing the number of available spaces by one and
then the producer fills that space with the next character.

The consumer signals the availability of another space after it reads a character from the buffer.

There’s a nice symmetry here. The producer consumes spaces and produces characters. The consumer
consumes characters and produces spaces. Semaphores are used to track the availability of both
resources (i.e., characters and spaces), synchronizing the execution of the producer and consumer.

This works great when there is a single producer process and a single consumer process. Next we’ll
think about what will happen if we have multiple producers and multiple consumers.

12
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Simultaneous Transactions

Figure 11.

Simultaneous Transactions

Suppose you and your friend
visit the ATM at exactly the
same time, and remove $50
from your account. What

happens?
B
i
P

Withdraw(6004, 50) Withdraw(6004, 50)

Debit(int account, int amount) {
t = balance[account];
balance[account] = t - amount;

)

What is supposed to happen?

Process # 1 Process #2
LD(R1@, balance, RO)

SUB(R8, R1, RO)

ST(R@, balance, R10)

LD(R1@, balance, R®)
SUB(Re, R1, R@)
ST(R@, balance, R10@)

NET: You have $100, and your
bank balance is $100 less.

Let’s take a moment to look at a different example. Automated teller machines allow bank customers
to perform a variety of transactions: deposits, withdrawals, transfers, etc. Let’s consider what happens
when two customers try to withdraw $50 from the same account at the same time.

A portion of the bank’s code for a withdrawal transaction is shown in the upper right. This code is
responsible for adjusting the account balance to reflect the amount of the withdrawal. Presumably the
check to see if there is sufficient funds has already happened.

What’s supposed to happen? Let’s assume that the bank is using a separate process to handle each
transaction, so the two withdrawal transactions cause two different processes to be created, each of
which will run the Debit code. If each of the calls to Debit run to completion without interruption, we
get the desired outcome: the first transaction debits the account by $50, then the second transaction
does the same. The net result is that you and your friend have $100 and the balance is $100 less.

So far, so good.

13
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But, What If...

But, What If...

Process # 1 Process #2
LD(R10, balance, R@)

LD(R10, balance, R@)
SUB(R@, R1, R@)
ST(R®, balance, R10)

SUB(R®, R1, RO)
ST(Re, balance, R10)

NET: You have $100 and your

We need to be careful when
writing concurrent
programs. In particular,
when modifying shared data.

For certain code segments,
called CRITICAL SECTIONS,
we would like to ensure that
no two executions overlap.

This constraint is called
MUTUAL EXCLUSION.

bank balance is $50 less! Solution: embed critical

sections in wrappers (e.g.,
“transactions”) that
guarantee their atomicity,

i.e., make them appear to be
single, instantaneous
operations.

4

Figure 12.

But what if the process for the first transaction is interrupted just after it’s read the balance? The second
process subtracts $50 from the balance, completing that transaction. Now the first process resumes,
using the now out-of-date balance it loaded just before being interrupted. The net result is that you
and your friend have $100, but the balance has only been debited by $50.

The moral of the story is that we need to be careful when writing code that reads and writes shared
data since other processes might modify the data in the middle of our execution. When, say, updating
a shared memory location, we’ll need to LD the current value, modify it, then ST the updated value.
We would like to ensure that no other processes access the shared location between the start of the LD
and the completion of the ST. The LD/modify/ST code sequence is what we call a “critical section.” We
need to arrange that other processes attempting to execute the same critical section are delayed until
our execution is complete. This constraint is called “mutual exclusion,” i.e., only one process at a time
can be executing code in the same critical section.

Once we’ve identified critical sections, we’ll use semaphores to guarantee they execute atomically,
i.e., that once execution of the critical section begins, no other process will be able to enter the
critical section until the execution is complete. The combination of the semaphore to enforce the
mutual exclusion constraint and the critical section of code implement what’s called a “transaction”. A
transaction can perform multiple reads and writes of shared data with the guarantee that none of the
data will be read or written by other processes while the transaction is in progress.

14
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Semaphores for Mutual Exclusion

Semaphores for Mutual Exclusion

semaphore lock = 1;

Debit(int account, int amount) { a <> b
wait(lock); // Wait for exclusive access
t = balance[account];

balance[account] = t - amount; aprecedeSb
signal(lock); // Finished with lock or
¥ b precedes a”

(i.e., they don’t overlap)

RESOURCE managed by “lock” semaphore:

Access to critical section Look up "database”
on Wikipedia to
ISSUES: learn about systems
Granularity of lock that support
1 lock for whole balance database? efficient
1 lock per account? transactions on
1 lock for all accounts ending in 004 shared data.

Figure 13.

Here’s the original code to Debit, which we’ll modify by adding a LOCK semaphore. In this case, the
resource controlled by the semaphore is the right to run the code in the critical section. By initializing
LOCK to 1, we’re saying that at most one process can execute the critical section at a time.

A process running the Debit code WAITs on the LOCK semaphore. If the value of LOCK is 1, the WAIT will
decrement value of LOCK to 0 and let the process enter the critical section. This is called acquiring the
lock. If the value of LOCK is 0, some other process has acquired the lock and is executing the critical
section and our execution is suspended until the LOCK value is non-zero.

When the process completes execution of the critical section, it releases the LOCK with a call to SIGNAL,
which will allow other processes to enter the critical section. If there are multiple WAITing processes,
only one will be able to acquire the lock, and the others will still have to wait their turn.

Used in this manner, semaphores are implementing a mutual exclusion constraint, i.e., there’s a
guarantee that two executions of the critical section cannot overlap. Note that if multiple processes
need to execute the critical section, they may run in any order and the only guarantee is that their
executions will not overlap.

There are some interesting engineering issues to consider. There’s the question of the granularity of
the lock, i.e., what shared data is controlled by the lock? In our bank example, should there be one
lock controlling access to the balance for all accounts? That would mean that no one could access any
balance while a transaction was in progress. That would mean that transactions accessing different
accounts would have to run one after the other even though they’re accessing different data. So one

15
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lock for all the balances would introduce unnecessary precedence constraints, greatly slowing the rate
at which transactions could be processed.

Since the guarantee we need is that we shouldn’t permit multiple simultaneous transactions on the
same account, it would make more sense to have a separate lock for each account, and change the
Debit code to acquire the account’s lock before proceeding. That will only delay transactions that truly
overlap, an important efficiency consideration for a large system processing many thousands of mostly
non-overlapping transactions each second.

Of course, having per-account locks would mean a lot of locks! If that’s a concern, we can adopt a
compromise strategy of having locks that protect groups of accounts, e.g., accounts with same last
three digits in the account number. That would mean we’d only need 1000 locks, which would allow
up to 1000 transactions to happen simultaneously.

The notion of transactions on shared data is so useful that we often use a separate system called a
database that provides the desired functionality. Database systems are engineered to provide low-
latency access to shared data, providing the appropriate transactional semantics. The design and
implementation of databases and transactions is pretty interesting - to follow up, | recommend reading
about databases on the web.

Producer/Consumer Atomicity Problems

Producer/Consumer Atomicity Problems

Consider multiple PRODUCER processes:

B B

buf[in] = c; B
"> _ buf[in] = c;
in = (in+l) % N; _{
™ in = (in+1) % N;

BUG: Producers interfere with each other.

Figure 14.

Returning to our producer/consumer example, we see that if multiple producers are trying to insert
characters into the buffer at the same time, it’s possible that their execution may overlap in a way that
causes characters to be overwritten and/or the index to be improperly incremented.
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We just saw this bug in the bank example: the producer code contains a critical section of code that
accesses the FIFO buffer and we need to ensure that the critical section is executed atomically.

Bounded Buffer Problem with Even More Semaphores

Bounded Buffer Problem
w/ even more Semaphores

SHARED MEMORY:
char buf[N]; /* The buffer */
int in=08, out=0;
semaphore chars=0, space=N;
semaphore lock=1;
/}RODUCER: CONSUMER:
send(char c) char rcv()
char c;
wait(space); wait(chars);
wait(lock); wait(lock);
buf[in] = c; c = buf[out];
in = (in+1)%N; out = (out+1)%N;
signal(lock); signal(lock);
signal(chars); signal(space);
} return c;
L ¥

Figure 15.

Here we’ve added a third semaphore, called LOCK, to implement the necessary mutual exclusion con-
straint for the critical section of code that inserts characters into the FIFO buffer. With this modification,
the system will now work correctly when there are multiple producer processes.

There’s a similar issue with multiple consumers, so we’ve used the same LOCK to protect the critical
section for reading from the buffer in the RCV code.

Using the same LOCK for producers and consumers will work, but does introduce unnecessary prece-
dence constraints since producers and consumers use different indices, i.e., IN for producers and
OUT for consumers. To solve this problem we could use two locks: one for producers and one for
consumers.
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The Power of Semaphores

The Power of Semaphores

SHARED MEMORY: A single

char buf[N]; /* The buffer */ synchronization
int in=0, out=0; primitive that
semaphore chars=0, space=N; enforces both:

semaphore lock=1;

/ PRODUCER:
send(char c)

CONSUMER: Precedence

char rcv() : P,
el relationships:

wait(space); ait(chars); send; < rcv;
ait(lock) wait(lock); rev; < sendj,y
buf[in] = c; c = buf[out];

Gn = (in+1)%N; out = (out+1)%N; )
ignal(lock); signal(lock);

ignal(space); Mutual-exclusion

return c; relationships:

protect variables
in and out

signal(chars);

}
A&

Figure 16.

Semaphores are a pretty handy Swiss army knife when it comes to dealing with synchronization issues.
When WAIT and SIGNAL appear in different processes, the semaphore ensures the correct execution
timing between processes. In our example, we used two semaphores to ensure that consumers can’t
read from an empty buffer and that producers can’t write into a full buffer.

We also used semaphores to ensure that execution of critical sections - in our example, updates of the
indices IN and OUT - were guaranteed to be atomic. In other words, that the sequence of reads and
writes needed to increment a shared index would not be interrupted by another process between the

initial read of the index and the final write.
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Semaphore Implementation

Semaphore Implementation

Semaphores are themselves shared data and implementing
WAIT and SIGNAL operations will require read /modify /write
sequences that must executed as critical sections. So how
do we guarantee mutual exclusion in these particular
critical sections without using semaphores?

Approaches:
— SVC implementation, using atomicity of kernel handlers.
Works in timeshared processor sharing a single
uninterruptable kernel.

— Implementation of a simple lock using a special instruction
(e.g. “test and set”), depends on atomicity of single
instruction execution. Works with shared-bus
multiprocessors supporting atomic read-modify-write bus
transactions. Using a simple lock to implement critical
sections, we can use software to implement other
semaphore functionality.

— Implementation using atomicity of individual read or write
operations. For example, see “Dekker’s Algorithm” on
Wikipedia.

Figure 17.

Now let’s figure out how to implement semaphores. They are themselves shared data and implement-
ing the WAIT and SIGNAL operations will require read/modify/write sequences that must be executed
as critical sections. Normally we’d use a lock semaphore to implement the mutual exclusion constraint
for critical sections. But obviously we can’t use semaphores to implement semaphores! We have what’s
called a bootstrapping problem: we need to implement the required functionality from scratch.

Happily, if we’re running on a timeshared processor with an uninterruptible OS kernel, we can use the
supervisor call (SVC) mechanism to implement the required functionality.

We can also extend the ISA to include a special test-and-set instruction that will let us implement
a simple lock semaphore, which can then be used to protect critical sections that implement more
complex semaphore semantics. Single instructions are inherently atomic and, in a multi-core processor,
will do what we want if the shared main memory supports both reading the old value and writing a

new value to a specific memory location as a single memory access.

There are other, more complex, software-only solutions that rely only on the atomicity of individual
reads and writes to implement a simple lock. For example, see “Dekker’s Algorithm” on Wikipedia.

We’ll look in more detail at the first two approaches.
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Semaphores as a Supervisor Call

Semaphores as a Supervisor Call

wait_h( ) {
int *addr; Calling sequence:
addr = VtoP(User.Regs[RO]); // get arg
if (*addr <= ©) {
User.Regs[XP] = User.Regs[XP] - 4;
sleep(addr); // put address of lock
} else // into Re
*addr = *addr - 1; CMOVE (lock, R®)
} SVC(WAIT) or SVC(SIGNAL)
signal h( ) { SVC call is no‘g o
int *addr; interruptible since it is
addr = VtoP(User.Regs[Re]); // get arg executed in kernel
*addr = *addr + 1; mode.
wakeup(addr);

}

Figure 18.

Here are the OS handlers for the WAIT and SIGNAL supervisor calls. Since SVCs are run kernel mode,
they can’t be interrupted, so the handler code is naturally executed as a critical section.

Both handlers expect the address of the semaphore location to be passed as an argument in the user’s
RO. The WAIT handler checks the semaphore’s value and if it’s non-zero, the value is decremented
and the handler resumes execution of the user’s program at the instruction following the WAIT SVC. If
the semaphore is 0, the code arranges to re-execute the WAIT SVC when the user program resumes
execution and then calls SLEEP to mark the process as inactive until the corresponding WAKEUP call is
made.

The SIGNAL handler is simpler: it increments the semaphore value and calls WAKEUP to mark as active
any processes that were WAITing for this particular semaphore.

Eventually the round-robin scheduler will select a process that was WAITing and it will be able to
decrement the semaphore and proceed. Note that the code makes no provision for fairness, i.e., there’s
no guarantee that a WAITing process will eventually succeed in finding the semaphore non-zero. The
scheduler has a specific order in which it runs processes, so the next-in-sequence WAITing process
will always get the semaphore even if there are later-in-sequence processes that have been WAITing
longer. If fairness is desired, WAIT could maintain a queue of waiting processes and use the queue to
determine which process is next in line, independent of scheduling order.
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Hardware Support for Semaphores

Hardware Support for Semaphores

TCLR(RA, literal, RC) test and clear location
PC « PC + 4
EA « Reg[Ra] + literal

Reg[Rc] « MEM[EA] .
MEM[EA] « © Atomicity guaranteed by memory

Executed ATOMICALLY (cannot be interrupted)
Can easily implement mutual exclusion using binary
semaphore

wait: TCLR(R31, lock, R®)

BEQ(R@,wait) wait(lock)
.. critical section ..

CMOVE(1,R0)

ST(R@, lock, R31) } signal(lock)

Figure 19.

Many ISAs support an instruction like the TEST-and-CLEAR instruction shown here. The TCLR instruc-
tion reads the current value of a memory location and then sets it to zero, all as a single operation. It’s
like a LD except that it zeros the memory location after reading its value.

To implement TCLR, the memory needs to support read-and-clear operations, as well as normal reads
and writes.

The assembly code at the bottom of the slide shows how to use TCLR to implement a simple lock. The
program uses TCLR to access the value of the lock semaphore. If the returned value in RC is zero, then
some other process has the lock and the program loops to try TCLR again. If the returned value is
non-zero, the lock has been acquired and execution of the critical section can proceed. In this case,
TCLR has also set the lock to zero, so that other processes will be prevented from entering the critical

section.

When the critical section has finished executing, a ST instruction is used to set the semaphore to a

non-zero value.
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Synchronization: The Dark Side

Synchronization: The Dark Side

The naive use of synchronization constraints can introduce
its own set of problems, particularly when a process requires
access to more than one protected resource.

Transfer(int accountl, int account2, int amount) {
wait(lock[accountl]);
wait(lock[account2]);
balance[accountl] = balance[accountl] - amount;
balance[account2] = balance[account2] + amount;
signal(lock[account2]);
signal(lock[accountl]);

> A
Transfer(6004, 6005, 50)

DEADLOCK (aka “deadly embrace”)!

Figure 20.

If the necessary synchronization requires acquiring more than one lock, there are some special consid-
erations that need to be taken into account. For example, the code below implements the transfer of
funds from one bank account to another. The code assumes there is a separate semaphore lock for
each account and since it needs to adjust the balance of two accounts, it acquires the lock for each
account.

Consider what happens if two customers try simultaneous transfers between their two accounts. The
top customer will try to acquire the locks for accounts 6005 and 6004. The bottom customer tries
to acquire the same locks, but in the opposite order. Once a customer has acquired both locks, the
transfer code will complete, releasing the locks.

But what happens if the top customer acquires his first lock (for account 6005) and the bottom customer
simultaneously acquires his first lock (for account 6004). So far, so good, but now each customer will not
be successful in acquiring their second lock, since those locks are already held by the other customer!

This situation is called a “deadlock” or “deadly embrace” because there is no way execution for either
process will resume - both will wait indefinitely to acquire a lock that will never be available.

Obviously, synchronization involving multiple resources requires a bit more thought.
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Dining Philosophers

Dining Philosophers

Philosophers think deep thoughts,
but have simple secular needs.
When hungry, a group of N
philosophers will sit around a table
with N chopsticks interspersed
between them. Food is served, and
each philosopher enjoys a leisurely
meal using the chopsticks on either
side to eat.

They are exceedingly polite and
patient, and each follows the
following dining protocol:

PHILOSOPHER'S ALGORITHM: Wait, I think I see a
* Take (wait for) LEFT stick problem here...  Shut upll
¢ Take (wait for) RIGHT stick \

¢« EAT until sated
* Replace both sticks

Figure 21.

The problem of deadlock is elegantly illustrated by the Dining Philosophers problem. Here there are,

say, 5 philosophers waiting to eat. Each requires two chopsticks in order to proceed, and there are 5
chopsticks on the table.

The philosophers follow a simple algorithm. First they pick up the chopstick on their left, then the
chopstick on their right. When they have both chopsticks they eat until they’re done, at which point
they return both chopsticks to the table, perhaps enabling one of their neighbors to pick them up and

begin eating. Again, we see the basic setup of needing two (or more) resources before the task can
complete.
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Deadlock!

Deadlock!

No one can make progress because they are all waiting for an
unavailable resource

CONDITIONS:

1) Mutual exclusion -
only one process can
hold a resource at a
given time

2) Hold-and-wait - a
process holds allocated
resources while waiting
for others

He still doesn't

3) N tion - Cousin Te Z 4
) No preemption - a ousin Tom is spared! look o0 happy..

resource can not be
removed from a
process holding it
SOLUTIONS:
4) Circular Wait Avoidance
.or-
Detection and Recovery

Figure 22.

Hopefully you can see the problem that may arise...

If all philosophers pick up the chopstick on their left, then all the chopsticks have been acquired, and
none of the philosophers will be able to acquire their second chopstick and eat. Another deadlock!

Here are the conditions required for a deadlock:

1. Mutual exclusion, where a particular resource can only be acquired by one process at a time.

2. Hold-and-wait, where a process holds allocated resources while waiting to acquire the next
resource.

3. No preemption, where a resource cannot be removed from the process which acquired it. Re-
sources are only released after the process has completed its transaction.

4. Circular wait, where resources needed by one process are held by another, and vice versa.

How can we solve the problem of deadlocks when acquiring multiple resources? Either we avoid the
problem to begin with, or we detect that deadlock has occurred and implement a recovery strategy.

Both techniques are used in practice.
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One Solution

One Solution

KEY: Assign a unique number
to each chopstick, request
resources in globally consistent
order:

New Algorithm:

* Take LOW stick

* Take HIGH stick

* EAT

* Replace both sticks.

SIMPLE PROOF:

Deadlock means that each philosopher is waiting for a resource
held by some other philosopher ...

But, the philosopher holding the highest numbered chopstick
can’t be waiting for any other philosopher (no hold-and-wait
cycle) ...

Thus, there can be no deadlock.

Figure 23.

Inthe Dining Philosophers problem, deadlock can be avoided with a small modification to the algorithm.
We start by assigning a unique number to each chopstick to establish a global ordering of all the
resources, then rewrite the code to acquire resources using the global ordering to determine which
resource to acquire first, which second, and so on.

With the chopsticks numbered, the philosophers pick up the lowest-numbered chopstick from either
their left or right. Then they pick up the other, higher-numbered chopstick, eat, and then return the
chopsticks to the table.

How does this avoid deadlock? Deadlock happens when all the chopsticks have been picked up but
no philosopher can eat. If all the chopsticks have been picked up, that means some philosopher has
picked up the highest-numbered chopstick and so must have earlier picked up the lower-numbered
chopstick on his other side. So that philosopher can eat then return both chopsticks to the table,
breaking the hold-and-wait cycle.

So if all the processes in the system can agree upon a global ordering for the resources they require,
then acquire them in order, there will be no possibility of a deadlock caused by a hold-and-wait cycle.
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Dealing With Deadlocks

Dealing With Deadlocks

Cooperating processes:

— Establish a fixed ordering to shared resources and require
all requests to be made in the prescribed order

Transfer(int accountl, int account2, int amount) { AT
int a = min(accountl, account2);
int b = max(accountl, account2);
waf_l't(lc’Ck[a] ); Transfer(6005, 6004, 50)
wait(lock[b]);

balance[accountl] balance[accountl] - amount;
balance[account2]

balance[account2] + amount; .
signal(lock[b]); S
signal(lock[a]); At |

Transfer(6004, 5065‘ 50)

}

Unconstrained processes:
- O/S discovers circular wait & kills waiting process
- Transaction model
- Hard problem

Figure 24,

A global ordering is easy to arrange in our banking code for the transfer transaction. We’ll modify the
code to first acquire the lock for the lower-numbered account, then acquire the lock for the higher-
numbered account. Now, both customers will first try to acquire the lock for the 6004 account. The
customer that succeeds then can acquire the lock for the 6005 account and complete the transaction.
The key to deadlock avoidance was that customers contented for the lock for the first resource they
both needed - acquiring that lock ensured they would be able to acquire the remainder of the shared
resources without fear that they would already be allocated to another process in a way that could
cause a hold-and-wait cycle.

Establishing and using a global order for shared resources is possible when we can modify all processes
to cooperate. Avoiding deadlock without changing the processes is a harder problem. For example, at
the operating system level, it would be possible to modify the WAIT SVC to detect circular wait and
terminate one of the WAITing processes, releasing its resources and breaking the deadlock.

The other strategy we mentioned was detection and recovery. Database systems detect when there’s
been an external access to the shared data used by a particular transaction, which causes the database
to abort the transaction. When issuing a transaction to a database, the programmer specifies what
should happen if the transaction is aborted, e.g., she can specify that the transaction be retried. The
database remembers all the changes to shared data that happen during a transaction and only changes
the master copy of the shared data when it is sure that the transaction will not be aborted, at which
point the changes are committed to the database.
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Summary

Summary

Communication among asynchronous processes
requires synchronization....
— Precedence constraints: a partial ordering among operations

— Semaphores as a mechanism for enforcing precedence
constraints

— Mutual exclusion (critical sections, atomic transactions) as a
common compound precedence constraint

— Solving Mutual Exclusion via binary semaphores

— Synchronization serializes operations, limits parallel
execution.

Many alternative synchronization mechanisms exist!

Deadlocks:

— Consequence of undisciplined use of synchronization
mechanism

— Can be avoided in special cases, detected and corrected in
others.

Figure 25.

In summary, we saw that organizing an application as communicating processes is often a convenient
way to go. We used semaphores to synchronize the execution of the different processes, providing
guarantees that certain precedence constraints would be met, even between statements in different
processes.

We also introduced the notion of critical code sections and mutual exclusion constraints that guaran-
teed that a code sequence would be executed without interruption by another process. We saw that
semaphores could also be used to implement those mutual exclusion constraints.

Finally we discussed the problem of deadlock that can occur when multiple processes must acquire
multiple shared resources, and we proposed several solutions based on a global ordering of resources
or the ability to restart a transaction.

Synchronization primitives play a key role in the world of “big data” where there are vast amounts
of shared data, or when trying to coordinate the execution of thousands of processes in the cloud.
Understanding synchronization issues and their solutions is a key skill when writing most modern
applications.
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