Computation Structures - Lecture 17

Virtualizing the Processor

Computation Structures - Lecture 17

About

This document is part of the "Computation Structures" course, available at https://PersonalComput
e.net/resources/computation-structures.

The objective of this course is to provide a solid foundation on the inner workings of computers, and
how to use them efficiently. Practically, it tries to answer the question "Why is my computer working
like this?" (where "like this" can mean "slow", "fast", "efficient" or "intermittently freezing").

Its intended audience is first and second-year university students, so its prerequisites are high-school
levels of understanding for math and physics, and a beginner-level understanding of programming. It
is also very useful to anyone whose job involves programming, but hasn’t taken a formal course in
Computer Architectures - a topic that is often overlooked in software or math-oriented degrees.

The Course Contents chapters use the materials from the original course (the MIT OpenCourseWare
release), with very small changes (mostly cosmetic in nature).

Where existing, the Real World Implications chapters provide some additional context and explana-
tions, not present in the MIT OpenCourseWare edition.

If you wish to download the "source code" for the course, go to https://github.com/PersonalCompute-
net/computation-structures/.

Credits

Computation Structures (6.004), Spring 2017 - Original course content, from MIT OpenCourseWare.
Course led by Chris Terman, at MIT.
Originally published at https://ocw.mit.edu/6-004S17 and https://github.com/computation-
structures/course/.
Licensed under Creative Commons BY-NC-SA 4.0 - https://ocw.mit.edu/terms.

Eisvogel - LaTeX template and cover artwork.
Created by Pascal Wagler - https://github.com/Wandmalfarbe/.
Originally published at https://github.com/Wandmalfarbe/pandoc-latex-template/.
Licensed under BSD 3-clause license.

Licensing

This work is licensed under a Creative Commons “Attribution- @@@@
NonCommercial-ShareAlike 4.0 International” license.

URL: https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en

https://PersonalCompute.net/resources/computation-structures
https://PersonalCompute.net/resources/computation-structures
https://github.com/PersonalCompute-net/computation-structures/
https://github.com/PersonalCompute-net/computation-structures/
https://ocw.mit.edu/6-004S17
https://github.com/computation-structures/course/
https://github.com/computation-structures/course/
https://ocw.mit.edu/terms
https://github.com/Wandmalfarbe/
https://github.com/Wandmalfarbe/pandoc-latex-template/
https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en
https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en
https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en

Computation Structures - Lecture 17

Course Contents

Review: Virtual Memory

Review: Virtual Memory

MW‘L

Virtual Physical

Memory DR PPN Memory
X
- X -
e
PAGEMAP

Goal: create illusion of large virtual address space

* divide address into (VPN,offset), map to (PPN,offset) or page fault

* use high address bits to select page: keep related data on same page

* use cache (TLB) to speed up mapping mechanism—works well

* long disk latencies: keep working set in physical memory, use write-back

Figure 1.

In the last lecture we introduced the notion of virtual memory and added a Memory Management Unit
(MMU) to translate the virtual addresses generated by the CPU to the physical addresses sent to main
memory. This gave us the ability to share physical memory between many running programs while
still giving each program the illusion of having its own large address space.

Both the virtual and physical address spaces are divided into a sequence of pages, each holding some
fixed number of locations. For example if each page holds 2!? bytes, a 32-bit address space would
have 232 /212 = 220 pages. In this example the 32-bit address can be thought of as having two fields:
a 20-bit page number formed from the high-order address bits and a 12-bit page offset formed from
the low-order address bits. This arrangement ensures that nearby data will be located on the same
page.

The MMU translates virtual page numbers into physical page numbers using a page map. Conceptually
the page map is an array where each entry in the array contains a physical page number along with a
couple of bits indicating the page status. The translation process is simple: the virtual page number is
used as an index into the array to fetch the corresponding physical page number. The physical page
number is then combined with the page offset to form the complete physical address.

In the actual implementation the page map is usually organized into multiple levels, which permits
us to have resident only the portion of the page map we’re actively using. And to avoid the costs of

Computation Structures - Lecture 17

accessing the page map on each address translation, we use a cache (called the translation look-aside
buffer) to remember the results of recent VPN-to-PPN translations.

All allocated locations of each virtual address space can be found on secondary storage. Note that they
may not necessarily be resident in main memory. If the CPU attempts to access a virtual address that’s
not resident in main memory, a page fault is signaled and the operating system will arrange to move
the desired page from second storage into main memory. In practice, only the active pages for each
program are resident in main memory at any given time.

MMU Address Translation

MMU Address Translation

32-bit virtual address

e,
‘/G) l @ \@ Page fault
(handled by SW)

Page Directory Partial Page Table Data
(1 page) (1 page)

S ——

VPN +
context

Translation
Look-aside

Buffer Access to the state for a particular MMU

context is controlled by two registers:
1. Context #, used by TLB
2. PDIR, used by multi-level page map

Figure 2.

Here’s a diagram showing the translation process. First we check to see if the required VPN-to-PPN
mapping is cached in the TLB. If not, we have to access the hierarchical page map to see if the page is
resident and, if so, lookup its physical page number. If we discover that the page is not resident, a page
fault exception is signaled to the CPU so that it can run a handler to load the page from secondary
storage.

Note that access to a particular mapping context is controlled by two registers. The context-number
register controls which mappings are accessible in the TLB. And the page-directory register indicates
which physical page holds the top tier of the hierarchical page map. We can switch to another context
by simply reloading these two registers.

To effectively accommodate multiple contexts we’ll need to have sufficient TLB capacity to simulta-
neously cache the most frequent mappings for all the processes. And we’ll need some number of
physical pages to hold the required page directories and segments of the page tables. For example, for

3

Computation Structures - Lecture 17

a particular process, three pages will suffice hold the resident two-level page map for 1024 pages at
each end of the virtual address space, providing access to up to 8MB of code, stack, and heap, more
than enough for many simple programs.

Contexts

Contexts

A context is an entire set of mappings from VIRTUAL to
PHYSICAL page numbers as specified by the contents of the

page map: Virtual Memory Physical Memory
DR
A,

We would like to support =

v multiple VIRTUAL to >C
PHYSICAL Mappings and, e \\‘EI

thus, multiple Contexts. =

PAGEMAF

THE BIG IDEA: Several programs, each with their own context,
may be simultaneously loaded into main memory!

Virtual Physical Virtual
Memory 1 Memory Memory 2

“Context switch™:
reload the page map!

We conly have
change Context# El E
and PDIR

map map

Figure 3.

The page map creates the context needed to translate virtual addresses to physical addresses. In a
computer system that’s working on multiple tasks at the same time, we would like to support multiple
contexts and be able to quickly switch from one context to another.

Multiple contexts would allow us to share physical memory between multiple programs. Each program
would have an independent virtual address space, e.g., two programs could both access virtual address
0 as the address of their first instruction and would end up accessing different physical locations in
main memory. When switching between programs, we’d perform a “context switch” to move to the
appropriate MMU context.

The ability to share the CPU between many programs seems like a great idea! Let’s figure out the details
of how that might work...

Computation Structures - Lecture 17

Building a Virtual Machine (VM)

Building a Virtual Machine (VM)

PROCESS #0 physical PROCESS #1
virtual memaory virtual
memory PO memory
P
PO
r
shared
?
PO
|
Context #0) Context #1

Goal: give each program its own “VIRTUAL MACHINE";
programs don’t “know” about each other...

New abstraction: a process which has its own

* machine state: RO, ..., R30 * program (w/ shared code)
» context (virtual address space) » virtual [/O devices
+ PC, stack

“08S Kernel” is a special, privileged process running in its own context.
It manages the execution of other processes and handles real [/O
devices, emulating virtual 1/O devices for each process.

Figure 4.

Let’s create a new abstraction called a “process” to capture the notion of a running program. A process
encompasses all the resources that would be used when running a program including those of the
CPU, the MMU, input/output devices, etc. Each process has a “state” that captures everything we know
about its execution.

The process state includes:

+ the hardware state of the CPU, i.e., the values in the registers and program counter.

+ the contents of the process’ virtual address space, including code, data values, the stack, and
data objects dynamically allocated from the heap. Under the management of the MMU, this
portion of the state can be resident in main memory or can reside in secondary storage.

« the hardware state of the MMU, which, as we saw earlier, depends on the context-number and
page-directory registers. Also included are the pages allocated for the hierarchical page map.

« additional information about the process’ input and output activities, such as where it has
reached in reading or writing files in the file system, the status and buffers associated with open
network connections, pending events from the user interface (e.g., keyboard characters and
mouse clicks), and so on.

As we’ll see, there is a special, privileged process, called the operating system (0OS), running in its own
kernel-mode context. The OS manages all the bookkeeping for each process, arranging for the process
run periodically. The OS will provide various services to the processes, such as accessing data in files,
establishing network connections, managing the window system and user interface, and so on.

Computation Structures - Lecture 17

To switch from running one user-mode process to another, the OS will need to capture and save the
entire state of the current user-mode process. Some of it already lives in main memory, so we’re all set
there. Some of it will be found in various kernel data structures. And some of it we’ll need to be able to
save and restore from the various hardware resources in the CPU and MMU. In order to successfully
implement processes, the OS must be able to make it seem as if each process was running on its own
“virtual machine” that works independently of other virtual machines for other processes. Our goal is
to efficiently share one physical machine between all the virtual machines.

One VM For Each Process

One VM For Each Process

P2 OO W W W -

Application | P3 O W W W

Virtual i /0 P4 (OO W W
P1 Memcry' Windows events files u sockets H SVCs I—
1
“ J
hd

PS5 (O W W
!\

OS Kernel (Specially privileged process)

: [m W

CPU MEM TIMER DISK /0 KVM

Figure 5.

Here’s a sketch of the organization we’re proposing. The resources provided by a physical machine are
shown at the bottom of the slide. The CPU and main memory form the computation engine at heart of
the system. Connected to the CPU are various peripherals, a collective noun coined from the English
word “periphery” that indicates the resources surrounding the CPU.

A timer generates periodic CPU interrupts that can be used to trigger periodic actions.
Secondary storage provides high-capacity non-volatile memories for the system.

Connections to the outside world are important too. Many computers include USB connections for
removable devices. And most provide wired or wireless network connections.

And finally there are usually video monitors, keyboards and mice that serve as the user interface. Cam-
eras and microphones are becoming increasing important as the next generation of user interface.

Computation Structures - Lecture 17

The physical machine is managed by the OS running in the privileged kernel context. The OS handles
the low-level interfaces to the peripherals, initializes and manages the MMU contexts, and so on. It’s
the OS that creates the virtual machine seen by each process.

User-mode programs run directly on the physical processor, but their execution can be interrupted by
the timer, giving the OS the opportunity to save away the current process state and move to running
the next process. Via the MMU, the OS provides each process with an independent virtual address
space that’s isolated from the actions of other processes.

The virtual peripherals provided by the OS isolate the process from all the details of sharing resources
with other processes. The notion of a window allows the process to access a rectangular array of pixels
without having to worry if some pixels in the window are hidden by other windows. Or worrying about
how to ensure the mouse cursor always appears on top of whatever is being displayed, and so on.
Instead of accessing I/0 devices directly, each process has access to a stream of |/O events that are
generated when a character is typed, the mouse is clicked, etc. For example, the OS deals with how
to determine which typed characters belong to which process. In most window systems, the user
clicks on a window to indicate that the process that owns the window now has the keyboard focus and
should receive any subsequent typed characters. And the position of the mouse when clicked might
determine which process receives the click. All of which is to say that the details of sharing have been
abstracted out of the simple interface provided by the virtual peripherals.

The same is true of accessing files on disk. The OS provides the useful abstraction of having each file
appear as a contiguous, growable array of bytes that supports read and write operations. The OS
knows how the file is mapped to a pool of sectors on the disk and deals with bad sectors, reducing
fragmentation, and improving throughput by doing read look-aheads and write behinds.

For networks, the OS provides access to an in-order stream of bytes to some remote socket. It im-
plements the appropriate network protocols for packetizing the stream, addressing the packets, and
dealing with dropped, damaged, or out-of-order packets.

To configure and control these virtual services, the process communicates with the OS using supervisor
calls (SVCs), a type of controlled-access procedure call that invokes code in the OS kernel.

The details of the design and implementation of each virtual service are beyond the scope of this
course. If you’re interested, a course on operating systems will explore each of these topics in detail.

The OS provides an independent virtual machine for each process, periodically switching from running
one process to running the next process.

Computation Structures - Lecture 17

Processes: Multiplexing the CPU

Processes: Multiplexing the CPU

1. Running in process #0

When this process is interrupted.
2. Stop execution of process #0
We RETURN fto this process! either because of explicit yield or
some sort of timer interrupt; trap

to handler code, saving current
PC+4 in XP

s N . ()
PROCESS Operating| PROCESS
0 System. 1

u
s

]
L
-

s

3. First: save process #0 state
(regs, context) Then: load
process #1 state (regs, context)

4, “Return” to process #1: just like
return from other trap handlers
\ (ie., use address in XP) but we're
returning from a different trap
@ than happened in step 2!

+— Virtual time

T T

I
[
e
]
an
@

©

5. Running in process #1

Figure 6.

Let’s follow along as we switch from running process #0 to running process #1.

Initially, the CPU is executing user-mode code in process #0. That execution is interrupted, either by an
explicit yield by the program, or, more likely, by a timer interrupt. Either ends up transferring control
to OS code running in kernel mode, while saving the current PC+4 value in the XP register. We’ll talk
about the interrupt mechanism in more detail in just a moment.

The OS saves the state of process #0 in the appropriate table in kernel storage. Then it reloads the state
from the kernel table for process #1. Note that the process #1 state was saved when process #1 was
interrupted at some earlier point.

The OS then uses a JMP() to resume user-mode execution using the newly restored process #1 state.
Execution resumes in process #1 just where it was when interrupted earlier.

And now we’re running the user-mode program in process #1.

We’ve interrupted one process and resumed execution of another. We’ll keep doing thisin a round-robin
fashion, giving each process a chance to run, before starting another round of execution.

The black arrows give a sense for how time proceeds. For each process, virtual time unfolds as a
sequence of executed instructions. Unless it looks at a real-time clock, a process is unaware that
occasionally its execution is suspended for a while. The suspension and resumption are completely
transparent to a running process.

Of course, from the outside we can see that in real time, the execution path moves from process to
process, visiting the OS during switches, producing the dove-tailed execution path we see here.

Computation Structures - Lecture 17

Time-multiplexing of the CPU is called “timesharing” and we’ll examine the implementation in more
detail in the following segment.

Key Technology: Timer Interrupts

Key Technology: Timer Interrupts

XAdr s If (IRQ == 1 && PC[31] == 0) {
— |] I // Reg[XP] « PC+4; PC <«“Xadr”
PCSEL = 4,
WASEL = 1, WDSEL = 0, WERF = 1,
| MWR = 0
4l

Figure 7.

A key technology for timesharing is the periodic interrupt from the external timer device. Let’s remind
ourselves how the interrupt hardware in the Beta works.

External devices request an interrupt by asserting the Beta’s interrupt request (IRQ) input. If the Beta is
runningin user mode, i.e., the supervisor bit stored in the PC is 0, asserting IRQ will trigger the following
actions on the clock cycle the interrupt is recognized.

The goal is to save the current PC+4 value in the XP register and force the program counter (PC) to
a particular kernel-mode instruction, which starts the execution of the interrupt handler code. The
normal process of generating control signals based on the current instruction is superseded by forcing
particular values for some of the control signals.

PCSEL is set to 4, which selects a specified kernel-mode address as the next value of the program
counter. The address chosen depends on the type of external interrupt. In the case of the timer
interrupt, the address is 0x80000008. Note that PC[31], the supervisor bit, is being set to 1 and the CPU
will be in kernel-mode as it starts executing the code of the interrupt handler.

The WASEL, WDSEL, and WERF control signals are set so that PC+4 is written into the XP register (i.e.,
R30) in the register file.

Computation Structures - Lecture 17

And, finally, MWR is set to 0 to ensure that if we're interrupting a ST instruction that its execution is
aborted correctly.

So in the next clock cycle, execution starts with the first instruction of the kernel-mode interrupt
handler, which can find the PC+4 of the interrupted instruction in the XP register of the CPU.

Beta Interrupt Handling

Beta Interrupt Handling

Minimal Hardware Implementation:

* Check for Interrupt Requests (IRQs) RESET = 0x80000000: | BR(...
before each instruction fetch. [LLOP = 0x20000004: | BR(-..

* On IRQ j: X_ADR = 0x80000008: | BR{...
=copy PC+4 into Reg[XP]; 12: | BR|...
=INSTALL j*4 as new PC.

Handler Coding: %

* Save state in “UserMState” structure

UserMState: | gaygn

* Call C procedure to handle the exception
STATE

» re-install saved state from UserMState
* Return to Reg[XP]-4 TRANSPARENT to
WHERE to find handlers? mterrupted program!

sP
* BETA Scheme: WIRE IN a low-memory address for
each exception handler entry point

* Common alternative: WIRE IN the address of a |
TABLE of handler addresses (“interrupt vectors”)

Figure 8.

As we can see the interrupt hardware is pretty minimal: it saves the PC+4 of the interrupted user-mode
program in the XP register and sets the program counter to some predetermined value that depends
on which external interrupt happened.

The remainder of the work to handle the interrupt request is performed in software. The state of the
interrupted process, e.g., the values in the CPU registers RO through R30, is stored in main memoryin an
0S data structure called UserMState. Then the appropriate handler code, usually a procedure written
in C, is invoked to do the heavy lifting. When that procedure returns, the process state is reloaded from
UserMState. The OS subtracts 4 from the value in XP, making it point to the interrupted instruction and
then resumes user-mode execution with a JMP(XP).

Note that in our simple Beta implementation the first instructions for the various interrupt handlers
occupy consecutive locations in main memory. Since interrupt handlers are longer than one instruction,
this first instruction is invariably a branch to the actual interrupt code. Here we see that the reset
interrupt (asserted when the CPU first starts running) sets the PC to 0, the illegal instruction interrupt
sets the PC to 4, the timer interrupt sets the PC to 8, and so on. In all cases, bit 31 of the new PC value

10

Computation Structures - Lecture 17

is set to 1 so that handlers execute in supervisor or kernel mode, giving them access to the kernel
context.

A common alternative is provide a table of new PC values at a known location and have the interrupt
hardware access that table to fetch the PC for the appropriate handler routine. This provides the same
functionality as our simple Beta implementation.

Since the process state is saved and restored during an interrupt, interrupts are transparent to the
running user-mode program. In essence, we borrow a few CPU cycles to deal with the interrupt, then
it’s back to normal program execution.

Example: Timer Interrupt Handler

Example: Timer Interrupt Handler

Example:
Operating System maintains current time of day (TOD) count.
But...this value must be updated periodically in response to
clock EVENTS, i.e. signal triggered by 60 Hz timer hardware.

Program A (Application)
* Executes instructions of the user program.
* Doesn't want to know about clock hardware, interrupts, etc!!
* Can incorporate TOD into results by “asking” OS.

Clock Handler
* GUTS: Sequence of instructions that increments TOD.
Written in C.

* Entry/Exit sequences save & restore interrupted state, call
the C handler. Written as assembler “stubs”.

Figure 9.

Here’s how the timer interrupt handler would work. Our initial goal is to use the timer interrupt to
update a data value in the OS that records the current time of day (TOD). Let’s assume the timer
interrupt is triggered every 1/60th of a second.

A user-mode program executes normally, not needing to make any special provision to deal with
timer interrupts. Periodically the timer interrupts the user-mode program to run the clock interrupt
handler code in the OS, then resumes execution of the user-mode program. The program continues
execution just as if the interrupt had not occurred. If the program needs access to the TOD, it makes
the appropriate service request to the OS.

The clock handler code in the OS starts and ends with a small amount of assembly-language code
to save and restore the state. In the middle, the assembly code makes a C procedure call to actually
handle the interrupt.

11

Computation Structures - Lecture 17

Interrupt Handler Coding

Interrupt Handler Coding

long TimeOfDay;
struct MState { int Regs[31];} UserMState;

/* Executed 60 times/sec */ §

Clock_Handler(){ Ha:(}dler.
TimeOfDay = TimeOfDay+1; (written in C)
if (TimeOfDay % QUANTUM == 0) Scheduler();

Clock_h:
ST(r0, UserMState) // Save state of
ST(rl, UserMState+4) // interrupted
// app pgm...
ST(r30, UserMState+30%4)
LD(KStack, SP) // Use KERNEL SP “ ”
BR(Clock_Handler, 1p) /7 call handler Interrupt stub
LD(UserMState, r0) // Restore saved (written in assy.)
LD(UserMState+4, rl) /7 state.
LD(UserMState+30%4, r30)
SUBC(XP, 4, XP) // execute interrupted inst
IMP (XP) // Return to app.

Figure 10.

Here’s what the handler code might look like. In C, we find the declarations for the TOD data value and
the structure, called UserMState, that temporarily holds the saved process state.

There’s also the C procedure for incrementing the TOD value.

A timer interrupt executes the BR() instruction at location 8, which branches to the actual interrupt
handler code at CLOCK_H. The code first saves the values of all the CPU registers into the UserMState
data structure. Note that we don’t save the value of R31 since its value is always 0.

After setting up the kernel-mode stack, the assembly-language stub calls the C procedure above to do
the hard work. When the procedure returns, the CPU registers are reloaded from the saved process
state and the XP register value decremented by 4 so that it will point to the interrupted instruction.
Then a JMP(XP) resumes user-mode execution.

Okay, that was simple enough. But what does this all have to do with timesharing - wasn’t our goal to
arrange to periodically switch which process was running?

Aha! We have code that runs on every timer interrupt, so let’s modify it so that every so often we
arrange to call the OS’ Scheduler () routine. In this example, we’d set the constant QUANTUM to 2 if
we wanted to call Scheduler() every second timer interrupt.

The Scheduler () subroutine is where the time sharing magic happens!

12

Computation Structures - Lecture 17

Simple Timesharing Scheduler

Simple Timesharing Scheduler

struct MState { int Regs[31]; } UserMState;

struct PCB { // Process Control Block

struct MState State; // Processor state

struct Context PageMap; // MMU state for proc

int DPYNum; // Console number (and other I/0 state)
} ProcTb1[N]; // one per process
int Cur; // index of “Actiwve” process

Scheduler() {

ProcTb1[Cur] .State = UserMState; // Save Cur state
Cur = (Cur+1)%N; // Incr mod N
UserMState = ProcTb1[Cur].State; // Install state for next User

LoadUserContext(ProcTbl1 [Cur].PageMap); // Install context
H

Figure 11.

Here we see the UserMState data structure from the previous slide where the user-mode process state

is stored during interrupts.

And here’s an array of process control block (PCB) data structures, one for each process in the system.
The PCB holds the complete state of a process when some other process is currently executing -
it’s the long-term storage for processor state! As you can see, it includes a copy of MState with the
process’ register values, the MMU state, and various state associated with the process’ input/output
activities, represented here by a number indicating which virtual user-interface console is attached to

the process.

There are N processes altogether. The variable CUR gives the index into ProcTable for the currently

running process.

And here’s the surprisingly simple code for implementing timesharing. Whenever the Scheduler ()
routine is called, it starts by moving the temporary saved state into the PCB for the current process. It
then increments CUR to move to the next process, making sure it wraps back around to 0 when we’ve
just finished running the last of the N processes. It then loads reloads the temporary state from the
PCB of the new process and sets up the MMU appropriately.

At this point Scheduler () returns and the clock interrupt handler reloads the CPU registers from the
updated temporary saved state and resumes execution. Voila! We’re now running a new process...

13

Computation Structures - Lecture 17

OS Organization: Processes

OS Organization: Processes

g loop:SVC (0) loop:SVC(2) loop:SVC (3)
§ SVC (1) ’ SVC(3) svVa (1) | User
T Mode
& BR (loop) BR (loop) BR(loop) PC[31]=0
4 pg P2 PN
2 .
PYNUM=0 3 DPYNUM=27
L]
@ - Kernel
Z = Mode
o Saved d Scheduler PC[31]=1
Regs
(MStacdIBEED Clock
= Handler
> | -

[

(%]

Figure 12,

Let’s use this diagram to once again walk through how time sharing works. At the top of the diagram
you’ll see the code for the user-mode processes, and below the OS code along with its data structures.

The timer interrupts the currently running user-mode program and starts execution of the 0S’ clock
handler code. The first thing the handler does is save all the registers into the UserMState data struc-
ture.

If the Scheduler () routine is called, it moves the temporarily saved state into the PCB, which provides
the long-term storage for a process’ state. Next Scheduler() copies the saved state for the next
process into the temporary holding area. Then the clock handler reloads the updated state into the
CPU registers and resumes execution, this time running code in the new process.

14

Computation Structures - Lecture 17

One Interrupt at a Time

One Interrupt at a Time!

Interrupts allowed!

g loop:SVC (0) loop:SVC (2) loop:SVC (3)
é SVC (1) SVC(3) SVC (1)
& 0o coc coc
& BR(loop) BR (loocp) BR({loop)
i P2 PN
8 -
Pl: | MState P2: [Mscate PN | Msmee
DPYNUM=0 DPFYNUM=| 3 DPYNUM=27
L J
T
i
y !
U Saved Scheduler
Regs
{M5tate) Clock
Handler
o)
-

Kernel code is No interrupts!
not re-entrant!
Figure 13.

While we’re looking at the OS, note that since its code runs with the supervisor mode bit set to 1,
interrupts are disabled while in the OS. This prevents the awkward problem of getting a second
interrupt while still in the middle of handling a first interrupt, a situation that might accidentally
overwrite the state in UserMState. But that means one has to be very careful when writing OS code.
Any sort of infinite loop can never be interrupted. You may have experienced this when your machine
appears to freeze, accepting no inputs and just sitting there like a lump. At this point, your only choice
is to power-cycle the hardware (the ultimate interrupt!) and start afresh.

Interrupts are allowed during execution of user-mode programs, so if they run amok and need to be
interrupted, that’s always possible since the OS is still responding to, say, keyboard interrupts. Every
0S has a magic combination of keystrokes that is guaranteed to suspend execution of the current
process, sometimes arranging to make copy of the process state for later debugging. Very handy!

15

Computation Structures - Lecture 17

Exception Hardware

0x8000Q004 Exception Hardware
(" xsOP | if (bad opcode) {
N] I // Reg[XP] « PC+4; PC <“I1lop”
PCSEL = 3,
.) E [WASEL = 1, WDSEL = 0, WERF = 1
SL-';,‘E!FV-'S.;: | m:‘g'c‘ﬂn$ WR =0
bit is an! [x4] |—° H

processor
enters

kernel mode
before first

Figure 14.

Another service provided by operating system is dealing properly with the attempt to execute instruc-
tions with “illegal” opcodes. lllegal is quotes because that just means opcodes whose operations
aren’timplemented directly by the hardware. As we’ll see, it’s possible extend the functionality of the

hardware via software emulation.

The action of the CPU upon encountering an illegal instruction (sometimes referred to as an unim-
plemented user operation or UUO) is very similar to how it processes interrupts. Think of illegal
instructions as an interrupt caused directly by the CPU! As for interrupts, the execution of the current
instruction is suspended and the control signals are set to values to capture PC+4 in the XP register
and set the PC to, in this case, 0x80000004. Note that bit 31 of the new PC, aka the supervisor bit, is set
to 1, meaning that the OS handler will have access to the kernel-mode context.

16

Computation Structures - Lecture 17

Exception Handling

Figure 15.

Exception Handling

// hardware interrupt vectors are in low memory _ This ic where the HW
- =0 " sets the PC during an
BR(I_Reset) // when Beta first starts r.-’.-’egr}.-’apcadeé.’\’i’pﬁcn
BRCI_I110p) // on I1legal Instruction (eg SVC)
BRCI_Clk) // on timer interrupt
BR(T_Kbd) // on keyboard interrupt, use RDCHAR() to get character

BR(I_Mouse) // on mouse interrupt, use CLICK() to get coords

// start of kernel-mode storage

KStack:
LONGC . +4) // Pointer to ...
STORAGE(256) // ... the kernel stack.

// Here's the SAVED STATE of the interrupted user-mode process
// filled by interrupt handlers
UserMState:

STORAGE(32) // RO-R30... (PC is in XP/R30!)

N =16 // max number of processes
Cur:

LONG(0) // index (0 to N-1) into ProcTbl for current process
ProcThl:

STORAGE(N*PCB_Size) // PCB_Size = # bytes to hold complete state

Here’s some code similar to that found in the Tiny Operating System (TinyOS), which you’ll be experi-

menting with in the final lab assignment. Let’s do a quick walk-through of the code executed when
an illegal instruction is executed. Starting at location 0, we see the branches to the handlers for the
various interrupts and exceptions. In the case of anillegal instruction, the BR(I_IllOp) in location 4 will

be executed.

Immediately following is where the OS data structures are allocated. This includes space for the OS
stack, UserMState where user-mode register values are stored during interrupts, and the process
table, providing long-term storage for the complete state of each process while another process is

executing.

17

Computation Structures - Lecture 17

Useful Macros

| Code is from beta.uasm |

Useful Macros

// Macro to extract and right-adjust a bit field from RA, and leave it
// in RB. The bit field M:N, where M >= N.
.macro extract_field (RA, M, N, RB) {
SHLC(RA, 31-M, RB) // Shift left, to mask out high bits
SHRC(RB, 31-(M-N), RB) // Shift right, to mask out low bits.
}

.macro save_all_regs(WHERE) save_all_regs(WHERE, r31)
.macro save_all_regs(WHERE, base_reg) {

ST(r0,WHERE, base_reg)

ST(r30,WHERE+120,base_reg)

.macro restore_all_regs(WHERE) restore_all_regs(WHERE, r31)
.macro restore_all_regs(WHERE, base_reg) {

LD(base_reg,WHERE, r0) Macros can be used
580 like an in-lined
LD(base_reg, WHERE+120, r30J [procedure call

X

Figure 16.

When writing in assembly language, it’s convenient to define macros for operations that are used

repeatedly. We can use a macro call whenever we want to perform the action and the assembler will

insert the body of the macro in place of the macro call, performing a lexical substitution of the macro’s

arguments.

Here’s a macro for a two-instruction sequence that extracts a particular field of bits from a 32-bit value.

M is the bit number of the left-most bit, N is bit number of the right-most bit. Bits are numbered 0

through 31, where bit 31 is the most-significant bit, i.e., the one at the left end of the 32-bit binary

value.

And here are some macros that expand into instruction sequences that save and restore the CPU

registers to or from the UserMState temporary storage area.

18

Computation Structures - Lecture 17

Illop Handler

Illop Handler

/// Handler for I1legal Instructions

I_TI110p:
save_all_regs(UserMState) // Save the machine state.
LD(KStack, SP) // Install kernel stack pointer.

So kernel code can
- make subroutine
calls!

ADDC(XP, -4, r0)
BR(ReadUserMem,LP)

SHRC(rO, 26, rl)

// Fetch the illegal instruction
// interpret addr in user context

// Extract the 6-bit OPCODE

MULCCrl, 4, rl)
LD(rl, UUOTb1, ri)
IMPCr1)

// Make it a WORD (4-byte) index
// Fetch UUOTb1[0PCODE]
// and dispatch to the UUO handler.

.macro UUOCADR) LONG(ADR+0x80000000) // Auxiliary Macros
.macro BAD() UUOCUUOError) B
¥ “supervisor bit. This is a
K This is a
e 64-entry
UUOTb1: BAD() uuo(svC_uuo) UuO(swapreg) BAD(O) - dispatch
BAD()
BAD()
. more table

BAD() BAD() BAD () table.
BAD() BAD() BAD(O) Each entry

follows .. isan

address of
a “handler”

Figure 17.

With those macros in hand, let’s see how illegal opcodes are handled...

Like all interrupt handlers, the first action is to save the user-mode registers in the temporary storage
area and initialize the OS stack.

Next, we fetch the illegal instruction from the user-mode program. Note that the saved PC+4 valueis a
virtual address in the context of the interrupted program. So we’ll need to use the MMU routines to
compute the correct physical address - more about this on the next slide.

Then we’ll use the opcode of the illegal instruction as an index into a table of subroutine addresses,
one for each of the 64 possible opcodes. Once we have the address of the handler for this particular
illegal opcode, we JMP there to deal with the situation.

Selecting a destination from a table of addresses is called “dispatching” and the table is called the
“dispatch table”. If the dispatch table contains many different entries, dispatching is much more efficient
in time and space than a long series of compares and branches. In this case, the table is indicating
that the handler for most illegal opcodes is the UUOError routine, so it might have smaller and faster
simply to test for the two illegal opcodes the OS is going to emulate.

Illegal opcode 1 will be used to implement procedure calls from user-mode to the OS, which we call
supervisor calls. More on this in the next segment.

As an example of having the OS emulate an instruction, we’ll use illegal opcode 2 as the opcode for the
SWAPREG instruction, which we’ll discuss now.

19

Computation Structures - Lecture 17

Accessing User Locations

Accessing User Locations

We'll need to use the VtoP routine from the previous lecture to
translate a user-mode virtual address into the appropriate
physical address. VtoP will have to be modified slightly to find
the correct context now that we have multiple processes.

// expects user-mode virtual address in RO,
// returns contents of that location in user's wirtual memory
ReadUserMem:

PUSH(LP) // save registers we use below
PUSH{r0)

BR(VtoP,LP) // returns physical address in RO
DEALLOCATE(1)

LD(r0,0,r0) // load the contents

POP(LP) // restore regs, return to caller
JMP(LP)

Figure 18.

But first just a quick look at how the OS converts user-mode virtual addresses into physical addresses
it can use. We’ll build on the MMU VtoP procedure, described in the previous lecture. This procedure
expects as its arguments the virtual page number and offset fields of the virtual address, so, following
our convention for passing arguments to C procedures, these are pushed onto the stack in reverse
order. The corresponding physical address is returned in RO.

We can then use the calculated physical address to read the desired location from physical memory.

20

Computation Structures - Lecture 17

Handler for Actual lllops

Handler for Actual lllops

// Here's the handler for truly unused opcodes (not SVCs or swapreg):
// I1legal instruction is in RO, it's address is Reg[XP]-4
UUQError:

CALL(KWrMsg) // Type out an error msg,

.text "ITlegal instruction "

ADDC(XP, -4, r0) // Fetch the i1legal instruction

BR(ReadUserMem,LP) // interpret addr in user context

CALL(KHexPrt)

CALL(KWrMsg) ™ These kernel utility routines (Kxxx) don't

.text " at location 0Ox" follow our usual calling convention - they
take their args in registers or from words

MOVE(xp, r0) immediately following the pracedure calll

CALL(KHexPrt) They adjust LP fo skip past any args

CALL(KWrMsg) before returning.

Stext 1oL "

HALT(O) // Then crash system.

Figure 19.

Okay, back to dealing with illegal opcodes. Here’s the handler for opcodes that are truly illegal. In this
case the OS uses various kernel routines to print out a helpful error message on the user’s console,
then crashes the system! You may have seen these “blue screens of death” if you run the Windows
operating system, full of cryptic hex numbers.

Actually, this wouldn’t be the best approach to handling an illegal opcode in a user’s program. In a
real operating system, it would be better to save the state of the process in a special debugging file
historically referred to as a “core dump” and then terminate this particular process, perhaps printing a
short message on the user’s console to let them know what happened. Then later the user could start
a debugging program to examine the dump file to see where their bug is.

21

Computation Structures - Lecture 17

Emulated Instruction: swapreg(Ra,Rc)

Emulated Instruction: swapreg(Ra,Rc)

// swapreg(RA,RC) swaps the contents of the two named registers.
.macro swapreg(RA,RC) betaopc(0x02,RA,0,RC)

// swapreg instruction is in RO, it's address is Reg[XP]-4
swapreg:
extract_field(r0, 25, 21, rl) // extract rc field
MULC(rl, 4, rl) // convert to byte offset into regs array
extract_field(r0, 20, 16, r2) // extract ra field
MULC(r2, 4, r2) // convert to byte offset into regs array
LD(r1l, UserMState, r3) // r3 <- regs[rc]
LD(r2, UserMState, r4) // rd4 =<- regs[ra]
ST(r4, UserMState, rl) // regs[rc] <- old regs[ra]
ST(r3, UserMState, r2) // regs[ra] <- old regs[rc]

// all done! Resume execution of user-mode program
BR(I_Rtn) // defined in the next section!

Figure 20.

Finally, here’s the handler that will emulate the actions of the SWAPREG instruction, after which
program execution will resume as if the instruction had been implemented in hardware. SWAPREG is
an instruction that swaps the values in the two specified registers.

To define a new instruction, we’d first have to let the assembler know to convert the swapreg(ra,rc)
assembly language statement into binary. In this case we’ll use a binary format similar to the ADDC
instruction, but setting the unused literal field to 0. The encoding for the RA and RC registers occur in
their usual fields and the opcode field is set to 2.

Emulation is surprisingly simple. First we extract the RA and RC fields from the binary for the swapreg
instruction and convert those values into the appropriate byte offsets for accessing the temporary
array of saved register values.

Then we use RA and RC offsets to access the user-mode register values that have been saved in
UserMState. We’'ll make the appropriate interchange, leaving the updated register values in UserMState,
where they’ll be loaded into the CPU registers upon returning from the illegal instruction interrupt
handler.

Finally, we’ll branch to the kernel code that restores the process state and resumes execution. We’ll
see this code in the next segment.

22

Computation Structures - Lecture 17

Communicationg with the 0S

Communicating with the OS

User-mode programs need to communicate with OS code:
Access virtual 1/0 devices
Communicate with other processes

~ But if OS5 Kernel is in
another context (ie, not in
user-mode address space)
how do we get to it?

Solution:

Abstraction: a supervisor call (SVC) with args in registers - fﬁ: .
result in RO or maybe user-mode memory how it

Implementation: works!
use illegal instructions to cause an exception -- |
OS code will recognize these particular illegal I?

instructions as a user-mode SVCs

& la

Figure 21.

User-mode programs need to communicate with the OS to request service or get access to useful 0OS
data like the time of day. But if they’re running in a different MMU context than the OS, they don’t have
direct access to OS code and data. And that might be bad idea in any case: the 0OS is usually responsible
for implementing security and access policies and other users of the system would be upset if any
random user program could circumvent those protections.

What’s needed is the ability for user-mode programs to call OS code at specific entry points, using
registers or the user-mode virtual memory to send or receive information. We’d use these “supervisor
calls” to access a well-documented and secure OS application programming interface (API). An example
of such aninterface is POSIX, a standard interface implemented by many Unix-like operating systems.

As it turns out, we have a way of transferring control from a user-mode program to a specific OS handler
- just execute an illegal instruction! We’ll adopt the convention of using illegal instructions with an
opcode field of 1 to serve as supervisor calls. The low order bits of these SVC instructions will contain
an index indicating which SVC service we’re trying to access.

Let’s see how this would work.

23

https://en.wikipedia.org/wiki/POSIX

Computation Structures - Lecture 17

0S Organization: Supervisor Calls

OS Organization: Supervisor Calls

E loop:SVC (0) loop:SVC(2) loop:SVC (3)
§ SVC (1) SVC(3) svVa (1) | User
& Mode
& BR (loop) BR (loop) BR(loop) PC[31]=0
& P P2 PN
g .
Pl | Msate P2 | Mstate PN | Mstate
DPYNUM=0 DPYNUM=| o DPYNUM=27
L J
T
a Kernel
z Y — - Mode
T —— llegal Op
= Handler

Figure 22,

Here’s our user-mode/kernel-mode diagram again. Note that the user-mode programs contain supervi-
sor calls with different indices, which when executed are intended to serve as requests for different 0S

services.

When an SVC instruction is executed, the hardware detects the opcode field of 1 as aniillegal instruction
and triggers an exception that runs the OS IllOp handler, as we saw in the previous segment.

The handler saves the process state in the temporary storage area, then dispatches to the appropriate
handler based on the opcode field. This handler can access the user’s registers in the temporary storage
area, or using the appropriate OS subroutines can access the contents of any user-mode virtual address.
If information is to be returned to the user, the return values can be stored in the temporary storage
area, overwriting, say, the saved contents of the user’s RO register. Then, when the handler completes,
the potentially-updated saved register values are reloaded into the CPU registers and execution of the
user-mode program resumes at the instruction following the supervisor call.

24

Computation Structures - Lecture 17

Handler for SVCs
Handler for SVCs
SVC Instruction format
| BREDDEIl e e=es |xxx |
— —
SVC opcode SVC index
/7 Sub-handler for SVCs, called from I_IT10p on SVC opcode:
// SVC instruction is in RO, it’'s address is Reg[XP]-4
SVC_UUo:
ANDC(r0,0x7,rl) J/ Pick out Tow bits,
SHLC(rl,2,rl) // make a word 1ndex,
LD(rl,SVCTb1,r1) // and fetch the table entry.
IMP(rl)
SVCTh1: UUOCHaltH) // SVC(D): User-mode HALT instruction
Uuo(WrMsgH) /7 SVC(1): Write message
Uuo (WrChH) // SVC(2): Write Character
Another Uuo(GetKeyH) /7 SVC(3): Get Key
dispatch UUD(HexPrtH) /7 SVC{4): Hex Print
table! U0 (WaitH) /7 SVC(5): Wait(S), 5 in R3
uuo(SignalH) /7 SVC(B): Signal(S), S in R3
uuo(CyieldH) S/ SVC(T): Yield(Q
Figure 23.

Earlier we saw how the illegal instruction handler uses a dispatch table to choose the appropriate

sub-handler depending on the opcode field of the illegal instruction.

In this slide we see the sub-handler for SVC instructions, i.e., those with an opcode field of 1. This code

uses the low-order bits of the instruction to access another dispatch table to select the appropriate

code for each of the eight possible SVCs.

Our Tiny OS only has a meagre selection of simple services. A real OS would have SVCs for accessing

files, dealing with network connections, managing virtual memory, spawning new processes, and so

on.

25

Computation Structures - Lecture 17

Returning to User-mode

Returning to User-mode

// Alternate return from interrupt handler which BACKS UP PC,
// and calls the scheduler prior to returning. This causes
// the trapped SVC to be re-executed when the process is

// eventually rescheduled...

HaltH:

I _wWait:
LD(UserMState+(4*XP), r0) // Grab XP from saved MState,
SUBC(rD, 4, r0) // back it up to point to
ST(r0, UserMState+(4*XP)) // SVC instruction

YieldH:
CALL(Scheduler) // Switch current process,
BR(I_Rtn)

// Here's the common exit sequence from Kernel interrupt handlers:
// Restore registers, and jump back to the interrupted user-mode

// program.
I_Rtn:
restore_all_regs(UserMState)
IMP (XP) // Good place for debugging breakpoint!

Figure 24,

Here’s the code for resuming execution of the user-mode process when the SVC handler is done: simply
restore the saved values for the registers and JMP to resume execution at the instruction following the
SVCinstruction.

There are times when for some reason the SVC request cannot not be completed and the request
should be retried in the future. For example, the ReadCh SVC returns the next character typed by the
user, but if no character has yet been typed, the OS cannot complete the request at this time. In this
case, the SVC handler should branch to I_Wait, which arranges for the SVC instruction to be re-executed
next time this process runs and then calls Scheduler() to run the next process. This gives all the other
processes a chance to run before the SVC is tried again, hopefully this time successfully.

You can see that this code also serves as the implementation for two different SVCs! A process can give
up the remainder of its current execution time slice by calling the Yield() SVC. This simply causes the 0S
to call Scheduler(), suspending execution of the current process until its next turn in the round-robin
scheduling process.

And to stop execution, a process can call the Halt() SVC. Looking at the implementation, we can see
that “halt” is a bit of misnomer. What really happens is that the system arranges to re-execute the
Halt() SVC each time the process is scheduled, which then causes the OS to schedule the next process
for execution. The process appears to halt since the instruction following the Halt() SVC is never
executed.

26

Computation Structures - Lecture 17

Adding New SVCs
Adding New SVCs
.macro GetTOD() SVC(8) // return time of today in RO
.macro SetTOD() SVC(9) // set time of day to wvalue in RO
// Sub-handler for sSvCs, called from I_I110p on SVC opcode:
/4 SVC dinstructieon is in RO, it’'s address is Reg[XP]-4
SVC_UUo:
ANDC(r0,0xF,rl) // Pick out Tow bits,
SHLC(rl,2,rl) // make a word index,
LD(r1l,SVCTh1,rl) // and fetch the table entry.
JIMP(rl)
SVCTh1: UUO(CHaltH) J/ SVC(D): User-mode HALT instruction
UuO (WrMsgH) /74 SVC(1): Write message
UUO (WrChH) /7 SVC(2): Write Character
U0 (GetKeyH) // SVC(3): Get Key
UUO (HexPrtH) /7 SVC(4): Hex Print
Uuo(waitH) /7 SVC(5): Wait(S), S in R3
Uuo(SignalH) // SVC(6): S5ignal(s), S in R3
UUo(CYieldH) J/OSVC(T): Yield()
UUO (GetTOD) /7 SVC(8): return time of day
Uuo(SetTOD) /7 SVC(9): set time of day
Figure 25.

Adding new SVC handlers is straightforward.

First we need to define new SVC macros for use in user-mode programs. In this example, we're defining
SVCs for getting and setting the time of day.

Since these are the eighth and ninth SVCs, we need to make a small adjustment to the SVC dispatch
code and then add the appropriate entries to the end of the dispatch table.

27

Computation Structures - Lecture 17

New SVC Handlers
New SVC Handlers
// return the current time of day in RO
GetTOD:
LD(TimeOfDay, ro) // load 05 time of day value
ST(r0,UserMState+4*0) // store into user’'s RO
BR(I_Rtn) // resume execution with updated RO value
// set the current time of day from the value in user's RO
SetTOD:
LD(UserMState+4*0,r0) // load value in (saved) user’s RO
ST(r0,TimeOfCay) // store to 0S5 time of day value
BR(I_Rtn) // resume execution
5VCs provide controlled access to OS5
services and data values and offer
‘atomic” (uninterrupted) execution of
instruction sequences.
Figure 26.

The code for the new handlers is equally straightforward. The handler can access the value of the
program’s RO by looking at the correct entry in the UserMState temporary holding area. It just takes a
few instructions to implement the desired operations.

The SVC mechanism provides controlled access to OS services and data. As we’ll see in a few lectures,
it’ll be useful that SVC handlers can’t be interrupted since they are running in supervisor mode where
interrupts are disabled. So, for example, if we need to increment a value in main memory, using a
LD/ADDC/ST sequence, but we want to ensure no other process execution intervenes between the
LD and the ST, we can encapsulate the required functionality as an SVC, which is guaranteed to be
uninterruptible.

We’ve made an excellent start at exploring the implementation of a simple time-shared operating
system. We’ll continue the exploration in the next lecture when we see how the OS deals with external
input/output devices.

28

	Course Contents
	Review: Virtual Memory
	MMU Address Translation
	Contexts
	Building a Virtual Machine (VM)
	One VM For Each Process
	Processes: Multiplexing the CPU
	Key Technology: Timer Interrupts
	Beta Interrupt Handling
	Example: Timer Interrupt Handler
	Interrupt Handler Coding
	Simple Timesharing Scheduler
	OS Organization: Processes
	One Interrupt at a Time
	Exception Hardware
	Exception Handling
	Useful Macros
	Illop Handler
	Accessing User Locations
	Handler for Actual Illops
	Emulated Instruction: swapreg(Ra,Rc)
	Communicationg with the OS
	OS Organization: Supervisor Calls
	Handler for SVCs
	Returning to User-mode
	Adding New SVCs
	New SVC Handlers

