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Reminder: A Typical Memory Hierarchy

Reminder: A Typical Memory Hierarchy

+ Everything is a cache for something else

On the X
datapath ERAZSEE | cycle | KB Software/Compiler
Level | Cache 2-4 cycles 32 KB Hardware
Level 2 Cache 10 cycles 256 KB Hardware
GnEs Level 3 Cache 40 cycles 10 MB Hardware
Main Memory 200 cycles 10 GB Software/OS
Other
chips . 10-100us 100 GB Software/O$
Mechanical SRS 10ms I TB Software/OS

devices

Figure 1.

In this lecture we return to the memory system that we last discussed in “The Memory Hierarchy”. There
we learned about the fundamental tradeoff in current memory technologies: as the memory’s capacity
increases, so does it access time. It takes some architectural cleverness to build a memory system
that has a large capacity and a small average access time. The cleverness is embodied in the cache, a
hardware subsystem that lives between the CPU and main memory. Modern CPUs have several levels
of cache, where the modest-capacity first level has an access time close to that of the CPU, and higher
levels of cache have slower access times but larger capacities.




Computation Structures - Lecture 16

Reminder: Hardware Caches

Reminder: Hardware Caches
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Figure 2.

Caches give fast access to a small number of memory locations, using associative addressing so that
the cache has the ability to hold the contents of the memory locations the CPU is accessing most
frequently. The current contents of the cache are managed automatically by the hardware. Caches
work well because of the principle of locality: if the CPU accesses location X at time T, it’s likely to
access nearby locations in the not-too-distant future. The cache is organized so that nearby locations
can all reside in the cache simultaneously, using a simple indexing scheme to choose which cache
location should be checked for a matching address. If the address requested by the CPU resides in the
cache, access time is quite fast.

In order to increase the probability that requested addresses reside in the cache, we introduced the
notion of “associativity”, which increased the number of cache locations checked on each access and
solved the problem of having, say, instructions and data compete for the same cache locations.

We also discussed appropriate choices for block size (the number of words in a cache line), replacement
policy (how to choose which cache line to reuse on a cache miss), and write policy (deciding when to
write changed data back to main memory). We'll see these same choices again in this lecture as we
work to expand the memory hierarchy beyond main memory.
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Figure 3.

We never discussed where the data in main memory comes from and how the process of filling main
memory is managed. That’s the topic of today’s lecture.

Flash drives and hard disks provide storage options that have more capacity than main memory, with
the added benefit of being non-volatile, i.e., they continue to store data even when turned off. The
generic name for these new devices is “secondary storage”, where data will reside until it’'s moved to
“primary storage”, i.e., main memory, for use. So when we first turn on a computer system, all of its data
will be found in secondary storage, which we’ll think of as the final level of our memory hierarchy.

As we think about the right memory architecture, we’ll build on the ideas from our previous discussion
of caches, and, indeed, think of main memory as another level of cache for the permanent, high-
capacity secondary storage. We’ll be building what we call a virtual memory system, which, like caches,
will automatically move data from secondary storage into main memory as needed. The virtual memory
system will also let us control what data can be accessed by the program, serving as a stepping stone
to building a system that can securely run many programs on a single CPU.

Let’s get started!
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Extending the Memory Hierarchy (continued)

Extending the Memory Hierarchy
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Figure 4.

Here we see the cache and main memory, the two components of our memory system as developed in
Lecture 14. And here’s our new secondary storage layer. The good news: the capacity of secondary
storage is huge! Even the most modest modern computer system will have 100’s of gigabytes of
secondary storage and having a terabyte or two is not uncommon on medium-size desktop computers.
Secondary storage for the cloud can grow to many petabytes (a petabyte is 10'® bytes or a million
gigabytes).

The bad news: disk access times are 100,000 times longer that those of DRAM. So the change in access
time from DRAM to disk is much, much larger than the change from caches to DRAM.

When looking at DRAM timing, we discovered that the additional access time for retrieving a contiguous
block of words was small compared to the access time for the first word, so fetching a block was the
right plan assuming we’d eventually access the additional words. For disks, the access time difference
between the first word and successive words is even more dramatic. So, not surprisingly, we’ll be
reading fairly large blocks of data from disk.

The consequence of the much, much larger secondary-storage access time is that it will be very time
consuming to access disk if the data we need is not in main memory. So we need to design our virtual
memory system to minimize misses when accessing main memory. A miss, and the subsequent disk
access, will have a huge impact on the average memory access time, so the miss rate will need to be
very, very, small compared to, say, the rate of executing instructions.
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Impact of Enormous Miss Penalty

Impact of Enormous Miss Penalty
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Figure 5.

Given the enormous miss penalties of secondary storage, what does that tell us about how it should
be used as part of our memory hierarchy?

We will need high associativity, i.e., we need a great deal of flexibility on how data from disk can be
located in main memory. In other words, if our working set of memory accesses fit in main memory, our
virtual memory system should make that possible, avoiding unnecessary collisions between accesses
to one block of data and another.

We’ll want to use a large block size to take advantage of the low incremental cost of reading successive
words from disk. And, given the principle of locality, we’d expect to be accessing other words of the
block, thus amortizing the cost of the miss over many future hits.

Finally, we’ll want to use a write-back strategy where we’ll only update the contents of disk when
data that’s changed in main memory needs to be replaced by data from other blocks of secondary
storage.

There is an upside to misses having such long latencies. We can manage the organization of main
memory and the accesses to secondary storage in software. Even if it takes 1000’s of instructions to
deal with the consequences of a miss, executing those instructions is quick compared to the access
time of a disk. So our strategy will be to handle hits in hardware and misses in software. This will lead to
simple memory management hardware and the possibility of using very clever strategies implemented
in software to figure out what to do on misses.




Computation Structures - Lecture 16

Virtual Memory

Virtual Memory
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Figure 6.

Here’s how our virtual memory system will work. The memory addresses generated by the CPU are
called virtual addresses to distinguish them from the physical addresses used by main memory. In
between the CPU and main memory there’s a new piece of hardware called the memory management
unit (MMU). The MMU'’s job is to translate virtual addresses to physical addresses.

“But wait!” you say. “Doesn’t the cache go between the CPU and main memory?” You’re right and at
the end of this lecture we’ll talk about how to use both an MMU and a cache. But for now, let’s assume
there’s only an MMU and no cache.

The MMU hardware translates virtual addresses to physical addresses using a simple table lookup. This
table is called the page map or page table. Conceptually, the MMU uses the virtual address as index
to select an entry in the table, which tells us the corresponding physical address. The table allows
a particular virtual address to be found anywhere in main memory. In normal operation we’d want
to ensure that two virtual addresses don’t map to the same physical address. But it would be okay if
some of the virtual addresses did not have a translation to a physical address. This would indicate that
the contents of the requested virtual address haven’t yet been loaded into main memory, so the MMU
would signal a memory-management exception to the CPU, which could assign a location in physical
memory and perform the required I/O operation to initialize that location from secondary storage.

The MMU table gives the system a lot of control over how physical memory is accessed by the program
running on the CPU. For example, we could arrange to run multiple programs in quick succession (a
technique called time sharing) by changing the page map when we change programs. Main mem-
ory locations accessible to one program could be made inaccessible to another program by proper
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management of their respective page maps. And we could use memory-management exceptions to
load program contents into main memory on demand instead of having to load the entire program
before execution starts. In fact, we only need to ensure the current working set of a program is actually
resident in main memory. Locations not currently being used could live in secondary storage until
needed. In this lecture and next, we’ll see how the MMU plays a central role in the design of a modern
timesharing computer system.

Virtual Memory Implementation: Paging

Virtual Memory Implementation: Paging
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Figure 7.

Of course, we’d need an impossibly large table to separately map each virtual address to a physical
address. So instead we divide both the virtual and physical address spaces into fixed-sized blocks,
called pages. Page sizes are always a power-of-2 bytes, say 2P bytes, so p is the number address bits
needed to select a particular location on the page. We’ll the use low-order p bits of the virtual or
physical address as the page offset. The remaining address bits tell us which page is being accessed
and are called the page number.

A typical page size is 4KB to 16KB, which correspond to p=12 and p=14 respectively. Suppose p=12.
So if the CPU produces a 32-bit virtual address, the low-order 12 bits of the virtual address are the
page offset and the high-order 20 bits are the virtual page number. Similarly, the low-order p bits of
the physical address are the page offset and the remaining physical address bits are the physical page
number.

The key idea is that the MMU will manage pages, not individual locations. We’ll move entire pages from
secondary storage into main memory. By the principal of locality, if a program accesses one location

8
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on a page, we expect it will soon access other nearby locations. By choosing the page offset from the
low-order address bits, we’ll ensure that nearby locations live on the same page (unless of course
we’re near one end of the page or the other). So pages naturally capture the notion of locality. And
since pages are large, by dealing with pages when accessing secondary storage, we’ll take advantage
that reading or writing many locations is only slightly more time consuming than accessing the first
location.

The MMU will map virtual page numbers to physical page numbers. It does this by using the virtual
page number (VPN) as an index into the page table. Each entry in the page table indicates if the page is
resident in main memory and, if it is, provides the appropriate physical page number (PPN). The PPN
is combined with the page offset to form the physical address for main memory.

If the requested virtual page is NOT resident in main memory, the MMU signals a memory-management
exception, called a page fault, to the CPU so it can load the appropriate page from secondary storage
and set up the appropriate mapping in the MMU.

Our plan to use main memory as page cache is called “paging” or sometimes “demand paging” since
movements of pages to and from secondary storage is determined by the demands of the program.

Demand Paging

Demand Paging

Basic idea:

—Start with all virtual pages in secondary storage, MMU
“empty”, ie, there are no pages resident in physical memory

—Begin running program... each VA “mapped” to a PA

* Reference to RAM-resident page: RAM accessed by
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* Reference to a non-resident page: page fault, which traps to
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—Fetches missing page from DISK into RAM

—Adjusts MMU to map newly-loaded virtual page directly
in RAM

—If RAM is full, may have to replace (“swap out”) some
little-used page to free up RAM for the new page.

—Working set incrementally loaded via page faults, gradually
evolves as pages are replaced...

Figure 8.

So here’s the plan. Initially all the virtual pages for a program reside in secondary storage and the MMU
is empty, i.e., there are no pages resident in physical memory.

The CPU starts running the program and each virtual address it generates, either for an instruction
fetch or data access, is passed to the MMU to be mapped to a physical address in main memory.
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If the virtual address is resident in physical memory, the main memory hardware can complete the
access.

If the virtual address in NOT resident in physical memory, the MMU signals a page fault exception,
forcing the CPU to switch execution to special code called the page fault handler. The handler allocates
a physical page to hold the requested virtual page and loads the virtual page from secondary storage
into main memory. It then adjusts the page map entry for the requested virtual page to show that it is
now resident and to indicate the physical page number for the newly allocated and initialized physical
page.

When trying to allocate a physical page, the handler may discover that all physical pages are currently
in use. In this case it chooses an existing page to replace, e.g., a resident virtual page that hasn’t been
recently accessed. It swaps the contents of the chosen virtual page out to secondary storage and
updates the page map entry for the replaced virtual page to indicate it is no longer resident. Now
there’s a free physical page to re-use to hold the contents of the virtual page that was missing.

The working set of the program, i.e., the set of pages the program is currently accessing, is loaded into
main memory through a series of page faults. After a flurry of page faults when the program starts
running, the working set changes slowly, so the frequency of page faults drops dramatically, perhaps
close to zero if the program is small and well-behaved. It is possible to write programs that constantly
generate page faults, a phenomenon called thrashing. Given the long access times of secondary
storage, a program that’s thrashing runs very slowly, usually so slowly that user’s give up and rewrite
the program to behave more sensibly.

Simple Page Map Design

Simple Page Map Design

Virtual Memory Physical Memory
PP

- i E—

-

X
X

= SN

PAGE MAP

HEEERE R

One entry per virtual page

— Resident bit R = 1 for pages stored in RAM, or O for non-
resident (disk or unallocated). Page fault when R = 0

— Contains physical page number (PPN) of each resident page

— Dirty bit D = 1 if we’ve changed this page since loading it from
disk (and therefore need to write it to disk when it’s replaced)

Figure 9.
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The design of the page map is straightforward. There’s one entry in the page map for each virtual page.
For example, if the CPU generates a 32-bit virtual address and the page size is 22 bytes, the virtual
page number has 32 — 12 = 20 bits and the page table will have 22° entries.

Each entry in the page table contains a “resident bit” (R) which is set to 1 when the virtual page is
resident in physical memory. If Ris 0, an access to that virtual page will cause a page fault. If Ris 1, the
entry also contains the PPN, indicating where to find the virtual page in main memory.

There’s one additional state bit called the “dirty bit” (D). When a page has just been loaded from

€«

secondary storage, it’s “clean”, i.e, the contents of physical memory match the contents of the page in
secondary storage. So the D bit is set to 0. If subsequently the CPU stores into a location on the page,
the D bit for the page is set to 1, indicating the page is “dirty”, i.e., the contents of memory now differ
from the contents of secondary storage. If a dirty page is ever chosen for replacement, its contents

must be written to secondary storage in order to save the changes before the page gets reused.

Some MMUs have additional state bits in each page table entry. For example, there could be a “read-
only” bit which, when set, would generate an exception if the program attempts to store into the
page. This would be useful for protecting code pages from accidentally being corrupted by errant data
accesses, a very handy debugging feature.

Example: Virtual » Physical Translation

Example: Virtual > Physical Translation

16-entry 8-page VPN offset
Page Map Phys. Mem. VA
= e [T Enm
o1 = orzon PPN
{Ene A
N -:355 S a6 byt /page (29)
A veNoso [ ytes/page
=le] - osire 16 virtual pages (24
j e L J 8 physical pages (2°)
el o 12-bit VA (4 vpn, 8 offset)
= : gin 11-bit PA (3 ppn, 8 offset)
s[-Te| - -va OxE c»jﬂa LRU page: VPN = OxE
© 1 1 L XSFC
HEIE 3 oxa00
. VPN 0xD LD(R31,0x2C8,R0):
N EI ¢ VA = 0x2C8, PA = 0x4C5 =)
5 [ e PR e

> PPN = Ox4

Figure 10.

Here’s an example of the MMU in action. To make things simple, assume that the virtual address is 12
bits, consisting of an 8-bit page offset and a 4-bit virtual page number. So there are 2* = 16 virtual

11
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pages. The physical address is 11 bits, divided into the same 8-bit page offset and a 3-bit physical page
number. So there are 23 = 8 physical pages.

On the left we see a diagram showing the contents of the 16-entry page map, i.e., an entry for each
virtual page. Each page table entry includes a dirty bit (D), a resident bit (R) and a 3-bit physical page
number, for a total of 5 bits. So the page map has 16 entries, each with 5-bits, for a total of 16*5=80
bits. The first entry in the table is for virtual page 0, the second entry for virtual page 1, and so on.

In the middle of the slide there’s a diagram of physical memory showing the 8 physical pages. The
annotation for each physical page shows the virtual page number of its contents. Note that there’s
no particular order to how virtual pages are stored in physical memory - which page holds what is
determined by which pages are free at the time of a page fault. In general, after the program has run
for a while, we’d expected to find the sort of jumbled ordering we see here.

Let’s follow along as the MMU handles the request for virtual address 0x2C8, generated by the execution
of the LD instruction shown here. Splitting the virtual address into page number and offset, we see
that the VPN is 2 and the offset is 0xC8. Looking at the page map entry with index 2, we see that the R
bitis 1, indicating that virtual page 2 is resident in physical memory. The PPN field of entry tells us that
virtual page 2 can be found in physical page 4.

Combining the PPN with the 8-bit offset, we find that the contents of virtual address 0x2C8 can be
found in main memory location 0x4C8. Note that the offset is unchanged by the translation process -
the offset into the physical page is always the same as the offset into the virtual page.

Page Faults
Page Faults

If a page does not have a valid Before Page Fault Physical
translation, MMU causes a page Page Map Memory
fault. OS page fault handler is
invoked, handles miss: L= ><
— Choose a page to replace, write m\ -

it back if dirty. Mark page as R=0

no longer resident

— Are there any restrictions on
which page we can we select? **

— Read page from Asecondary. After Page Fault Physical

storage into available physical

page Page Map Memory
— Update page map to show new R=0 \)/

page is resident m\ A VPN
— Return control to program, " R=1 /\

which re-executes memory \

access [

ia.org/wiki/Page_rep - algor ge_rep - algorithms. — ﬁ
Figure 11.
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Let’s review what happens when the CPU accesses a non-resident virtual page, i.e., a page with its
resident bit set to 0. In the example shown here, the CPU is trying to access virtual page 5.

In this case, the MMU signals a page fault exception, causing the CPU to suspend execution of the
program and switch to the page fault handler, which is code that deals with the page fault. The handler
starts by either finding an unused physical page or, if necessary, creating an unused page by selecting
an in-use page and making it available. In our example, the handler has chosen virtual page 1 for reuse.
If the selected page is dirty, i.e., its D bit is 1 indicating that its contents have changed since being read
from secondary storage, write it back to secondary storage. Finally, mark the selected virtual page as
no longer resident. In the “after” figure, we see that the R bit for virtual page 1 has been set to 0. Now
physical page 4 is available for re-use.

Are there any restrictions on which page we can select? Obviously, we can’t select the page that holds
the code for the page fault handler. Pages immune from selection are called “wired” pages. And it
would very inefficient to choose the page that holds the code that made the initial memory access,
since we expect to start executing that code as soon as we finish handling the page fault.

The optimal strategy would be to choose the page whose next use will occur farthest in the future.
But, of course, this involves knowledge of future execution paths and so isn’t a realizable strategy.
Wikipedia provides a nice description of the many strategies for choosing a replacement page, with
their various tradeoffs between ease of implementation and impact on the rate of page faults - see
the URL given at the bottom of the slide. The aging algorithm they describe is frequently used since it
offers near optimal performance at a moderate implementation cost.

Next, the desired virtual page is read from secondary storage into the selected physical page. In our
example, virtual page 5 is now loaded into physical page 4.

Then the R bit and PPN fields in the page table entry for virtual page 5 are updated to indicate that the
contents of that virtual page now reside in physical page 4.

Finally the handler is finished and execution of the original program is resumed, re-executing the
instruction that caused the page fault. Since the page map has been updated, this time the access
succeeds and execution continues.

13
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Example: Page Fault
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» This is a write so set D[0x6] = 1

Figure 12,

To double-check our understanding of page faults, let’s run through an example. Here’s the same setup
as in our previous example, but this time consider a store instruction that’s making an access to virtual
address 0x600, which is located on virtual page 6.

Checking the page table entry for VPN 6, we see that its R bit 0 indicating that it is NOT resident in main
memory, which causes a page fault exception.

The page fault handler selects VPN 0xE for replacement since we’ve been told in the setup that it’s the
least-recently-used page.

The page table entry for VPN OxE has D=1 so the handler writes the contents of VPN 0xE, which is found
in PPN 0x5, to secondary storage. Then it updates the page table to indicate that VPN OxE is no longer
resident.

Next, the contents of VPN 0x6 are read from secondary storage into the now available PPN 0x5.
Now the handler updates the page table entry for VPN 0x6 to indicate that it’s resident in PPN 0x5.

The page fault handler has completed its work, so program execution resumes and the ST instruction
is re-executed. This time the MMU is able to translate virtual address 0x600 to physical address 0x500.
And since the ST instruction modifies the contents of VPN 0x6, it’s D bit is set to 1.

Whew! We’re done:)

14
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Virtual Memory: the CS View

Virtual Memory: the CS View
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void PageFault(int VPageNo) {
int i;
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R[VPageNo] = 1;
D[VPageNo] = 0;

Figure 13.

We can think of the work of the MMU as being divided into two tasks, which as computer scientists,
we would think of as two procedures. In this formulation the information in the page map is held in
several arrays: the R array holds the resident bits, the D array holds the dirty bits, the PPN array holds
the physical page numbers, and the DiskAdr array holds the location in secondary storage for each
virtual page.

The VtoP procedure is invoked on each memory access to translate the virtual address into a physical
address. If the requested virtual page is not resident, the PageFault procedure is invoked to make
the page resident. Once the requested page is resident, the VPN is used as an index to lookup the
corresponding PPN, which is then concatenated with the page offset to form the physical address.

The PageFault routine starts by selecting a virtual page to be replaced, writing out its contents if it’s
dirty. The selected page is then marked as not resident.

Finally the desired virtual page is read from secondary storage and the page map information updated
to reflect that it’s now resident in the newly filled physical page.
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The HW/SW Balance

The HW/SW Balance

IDEA:

* devote HARDWARE to high-traffic, performance-critical path

* use (slow, cheap) SOFTWARE to handle exceptional cases

int VtoP(int VPageNo,int PO) {

if (R[VPageNo] == @)PageFault(VPageNo);
hardware return (PPN[VPageNo] << p) | PO;
}

/* Handle a missing page. */

void PageFault(int VPageNo) 1{
int i = SelectLRUPage();
if (D[1] == 1) WritePage(DiskAdr[i],PPN[i]);
R[1] =

PA[VPageNo] = PPN[i];
ReadPage(DiskAdr[VPageNo],PPN[i]);
R[VPageNo] = 1;
D[vPageNoc] = ©;

}

software

HARDWARE performs address translation, detects page faults:

* running program interrupted (“suspended”);
* PageFault(...) is forced;
* On return from PageFault; running program continues

Figure 14.

We’ll use hardware to implement the VtoP functionality since it’s needed for every memory access.

The call to the PageFault procedure is accomplished via a page fault exception, which directs the CPU
to execute the appropriate handler software that contains the PageFault procedure.

This is a good strategy to pursue in all our implementation choices: use hardware for the operations
that need to be fast, but use exceptions to handle the (hopefully infrequent) exceptional cases in
software. Since the software is executed by the CPU, which is itself a piece of hardware, what we’re
really doing is making the tradeoff between using special-purpose hardware (e.g., the MMU) or using
general-purpose hardware (e.g., the CPU). In general, one should be skeptical of proposals to use
special-purpose hardware, reserving that choice for operations that truly are commonplace and whose

performance is critical to the overall performance of the system.
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Page Map Arithmetic
Page Map Arithmetic
P
DR PPN !
Vpage# 1 4—
[ Voaeetpo] (1
NN
[§]
m "’ 1 ><:
E PAGEMAP PHYSICAL MEMORY
(v + p) bits in virtual address Typical page size: 4KB -16 KB
(m + p) bits in physical address Typical (v+p): 32-64 bits
2v number of VIRTUAL pages (4GB-16EB)
2m number of PHYSICAL pages Typical (m+p): 30-40+ bits
2p bytes per physical page (1GB-1TB)
v+p 5 :
gmm Ey‘ies m Vl}’:tufil rlnemory Long virtual addresses allow
ytes in physical memory ISAs to support larger
(m+2)2¥ bits in the page map memories > [SA longevity
Figure 15.

There are three architectural parameters that characterize a virtual memory system and hence the
architecture of the MMU.

P is the number of address bits used for the page offset in both virtual and physical addresses. V is the
number of address bits used for the virtual page number. And M is the number of address bits used for
the physical page number. All the other parameters, listed on the right, are derived from these three
parameters.

As mentioned earlier, the typical page size is between 4KB and 16KB, the sweet spot in the tradeoff
between the downside of using physical memory to hold unwanted locations and the upside of reading
as much as possible from secondary storage so as to amortize the high cost of accessing the initial
word over as many words as possible.

The size of the virtual address is determined by the ISA. We’re now making the transition from 32-bit
architectures, which support a 4 gigabyte virtual address space, to 64-bit architectures, which support
a 16 exabyte virtual address space. “Exa” is the S| prefix for 108 - a 64-bit address can access a lot of
memory!

The limitations of a small virtual address have been the main cause for the extinction of many ISAs.
Of course, each generation of engineers thinks that the transition they make will be the final one! |
can remember when we all thought that 32 bits was an unimaginably large address. Back then we’re
buying memory by the megabyte and only in our fantasies did we think one could have a system with
several thousand megabytes. Today’s CPU architects are feeling pretty smug about 64 bits - we’ll see
how they feel in a couple of decades!
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The size of physical addresses is currently between 30 bits (for embedded processors with modest
memory needs) and 40+ bits (for servers that handle large data sets). Since CPU implementations
are expected to change every couple of years, the choice of physical memory size can be adjusted to
match current technologies. Since programmers use virtual addresses, they’re insulated from this
implementation choice. The MMU ensures that existing software will continue to function correctly
with different sizes of physical memory. The programmer may notice differences in performance, but
not in basic functionality.

Example: Page Map Arithmetic

Example: Page Map Arithmetic

31 1211 o SUPPOSE
Virtual Page #
ge # | | 32-bit Virtual address (v+p)

20 30-bit physical address (m+p)

4 KB page size (p = 12)

 —— 12

THEN:
# Physical Pages = 2!8= 256K
18 # Virtual Pages = _ 220

| # Page Map Entries = 220 = 1M
# Bits In pagemap = 20%220 ~ 20M

PhysPg #
29

1211 0

Use fast SRAM for page map??? OUCH!

Figure 16.

For example, suppose our system supported a 32-bit virtual address, a 30-bit physical address and a
4KB pagesize. Sop = 12,v =32 — 12 = 20,and m = 30 — 12 = 18.

There are 2™ physical pages, which is 2'8 in our example.
There are 2V virtual pages, which is 22° in our example.

And since there is one entry in the page map for each virtual page, there are 22° (approximately one
million) page map entries.

Each page map entry contains a PPN, an R bit and a D bit, for a total of m+2 bits, which is 20 bits in our
example. So there are approximately 20 million bits in the page map.

If we were thinking of using a large special-purpose static RAM to hold the page map, this would get
pretty expensive!
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RAM-Resident Page Maps

RAM-Resident Page Maps

* Small page maps can use dedicated SRAM... gets
expensive for big ones!

* Solution: Move page map to main memory:

Virtual Address  Physical Memory

_— PROBLEM
virtual
page
number

Each memory reference

now takes 2 accesses
Page Map Ftr physical to physical memory!
‘ ‘ page
l number
R

«__ Physical memory
pages that hold
page map entries

Figure 17.

But why use a special-purpose memory for the page map? Why not use a portion of main memory,
which we have a lot of and have already bought and paid for!

We could use a register, called the page map pointer, to hold the address of the page map array in
main memory. In other words, the page map would occupy some number of dedicated physical pages.
Using the desired virtual page number as an index, the hardware could perform the usual array access
calculation to fetch the needed page map entry from main memory.

The downside of this proposed implementation is that it now takes two accesses to physical memory to
perform one virtual access: the first to retrieve the page table entry needed for the virtual-to-physical
address translation, and the second to actually access the requested location.
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Translation Look-aside Buffer (TLB)

Translation Look-aside Buffer (TLB)

* Problem: 2x performance hit... each memory
reference now takes 2 accesses!

* Solution: Cache the page map entries

Virtual Address  Physical Memory G)E A \
T 1 LOCALITY in memory
irtual reference patterns —
virtu TLB hit e &
page | oo o N SUPfER locality in
number | _: references to page
Page Thl Ptr physical map
page
number
J VARIATIONS:
* multi-level page map

-
TLB miss Kpaging the page may
TLB: small cache of page table entries

Associative 100kup by VPN https:/fen.wikipedia.org/wiki/Translation_lookaside_buffer

Figure 18.

Once again, caches to the rescue. Most systems incorporate a special-purpose cache, called a trans-
lation look-aside buffer (TLB), that maps virtual page numbers to physical page numbers. The TLB
is usually small and quite fast. It’s usually fully-associative to ensure the best possible hit ratio by
avoiding collisions. If the PPN is found by using the TLB, the access to main memory for the page table
entry can be avoided, and we’re back to a single physical access for each virtual access.

The hit ratio of a TLB is quite high, usually better than 99%. This isn’t too surprising since locality and
the notion of a working set suggest that only a small number of pages are in active use over short
periods of time.

As we’ll see in a few slides, there are interesting variations to this simple TLB page-map-in-main-
memory architecture. But the basic strategy will remain the same.
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MMU Address Translation

MMU Address Translation

32-bit virtual address

le N0

8\

virtual
bage
number

Data

Page fault
(handled by SW)

Look in TLB: VPN—PPN cache
Usually implemented as a small
fully-associative cache

Figure 19.

Putting it all together: the virtual address generated by the CPU is first processed by the TLB to see

if the appropriate translation from VPN to PPN has been cached. If so, the main memory access can

proceed directly.

If the desired mapping is not in the TLB, the appropriate entry in the page map is accessed in main

memory. If the page is resident, the PPN field of the page map entry is used to complete the address

translation. And, of course, the translation is cached in the TLB so that subsequent accesses to this

page can avoid the access to the page map.

If the desired page is not resident, the MMU triggers a page fault exception and the page fault handler

code will deal with the problem.
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Putting it All Together: MMU with TLB

Putting it All Together: MMU with TLB

Suppose 1. How many pages can reside in
« virtual memory of 232 bytes physical memory at one time? 214
» physical memory of 22% bytes 2. How many entries are there in
 page size is 21 (1 K) bytes the page table? 222 .
3. How many bits per entry in the

* 4-entry fully associative TLB
*[p=10,v=22,m = 14]
Page Map

page table? (Assume each entry
has PPN, resident bit, dirty bit) 16
4. How many pages does the page
TLE VPN ﬁ_[_)_f’f’lf table occpy? 2'“‘. bytes = 213 pages
5. What fraction of virtual memory
can be resident? 1/28
6. What is the physical address for
virtual address 0x1804? What
components are involved in the
translation? [VPN=6] 0x804
7. Same for 0x1080 [VPN=4] 0x1480
8. Same for OxOFC [VPN=0]| page fault

BNOUAWNRO
HHEHREOROKRKO
 oorOOOORO
RANWUUOWON

Figure 20.

Here’s a final example showing all the pieces in action. In this example, p = 10,v = 22,and m = 14.

How many pages can reside in physical memory at one time? There are 2™ physical pages, so 2'4.

How many entries are there in the page table? There’s one entry for each virtual page and there are 2¥
virtual pages, so there are 222 entries in the page table.

How many bits per entry in the page table? Assume each entry holds the PPN, the resident bit, and the
dirty bit. Since the PPN is m bits, there are m + 2 bits in each entry, so 16 bits.

How many pages does the page table occupy? There are 2V page table entries, each occupying (m+2)/8
bytes, so the total size of the page table in this example is 223 bytes. Each page holds 27 = 210 bytes,
so the page table occupies 223 /210 = 213 pages.

What fraction of virtual memory can be resident at any given time? There are 2" virtual pages, of which
2™ can be resident. So the fraction of resident pages is 2" /2¢ = 214/222 = 1/28,

What is the physical address for virtual address 0x1804? Which MMU components are involved in the
translation? First we have have decompose the virtual address into VPN and offset. The offset is the
low-order 10 bits, so is 0x004 in this example. The VPN is the remaining address bits, so the VPN is 0x6.
Looking firstin the TLB, we that the VPN-to-PPN mapping for VPN 0x6 is cached, so we can construct the
physical address by concatenating the PPN (0x2) with the 10-bit offset (0x4) to get a physical address
of 0x804. You’re right! It’s a bit of pain to do all the bit manipulations when p is not a multiple of 4.

How about virtual address 0x10807? For this address the VPN is 0x4 and the offset is 0x80. The translation
for VPN 0x4 is not cached in the TLB, so we have to check the page map, which tells us that the page is
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resident in physical page 5. Concatenating the PPN and offset, we get 0x1480 as the physical address.

Finally, how about virtual address 0XOFC? Here the VPN is 0 and the offset 0xFC. The mapping for VPN 0
is not found in the TLB and checking the page map reveals that VPN 0 is not resident in main memory,
so a page fault exception is triggered.

There are a few things to note about the example TLB and page map contents. Note that a TLB entry
can be invalid (it’s R bit is 0). This can happen when a virtual page is replaced, so when we change the
R bit to 0 in the page map, we have to do the same in the TLB. And should we be concerned that PPN
0x5 appears twice in the page table? Note that the entry for VPN 0x3 doesn’t matter since it’s R bit is 0.
Typically when marking a page not resident, we don’t bother to clear out the other fields in the entry
since they won’t be used when R=0. So there’s only one valid mapping to PPN 5.

Contexts
Contexts
A context is a mapping of VIRTUAL to PHYSICAL locations, as
dictated by contents of the page map:
Virtual Memory Physical Memory
DR
SR
eSS
PAGEMAP
Several programs may be simultaneously loaded into main
memory, each in its separate context:
Virtual Physical Virtual
Memory 1 Memory Memory 2
“Context switch”:
reload the page map?
map,; map;
Figure 21.

The page map provides the context for interpreting virtual addresses, i.e., it provides the information
needed to correctly determine where to find a virtual address in main memory or secondary storage.

Several programs may be simultaneously loaded into main memory, each with its own context. Note
that the separate contexts ensure that the programs don’t interfere which each other. For example, the
physical location for virtual address 0 in one program will be different than the physical location for
virtual address 0 in another program. Each program operates independently in its own virtual address
space. It’s the context provided by the page map that allows them to coexist and share a common
physical memory. So we need to switch contexts when switching programs. This is accomplished by
reloading the page map.
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Contexts: A Sneak Preview

Contexts: A Sneak Preview

emory 1 Meémory emory 2 First Glimpse of a

MVirtual Physical Virtual
‘ VIRTUAL MACHINE

- -

1. TIMESHARING among several programs
* Separate context for each program

* OS loads appropriate context into page map when
switching among programs

2. Separate context for OS “Kernel” (e.g., interrupt handlers)...
» “Kernel” vs “User” contexts
* Switch to Kernel context on interrupt;
* Switch back on interrupt return.

Figure 22,

In a timesharing system, the CPU will periodically switch from running one program to another, giving
theillusion that multiple programs are each running on their own virtual machine. This is accomplished
by switching contexts when switching the CPU state to the next program.

There’s a privileged set of code called the operating system (OS) that manages the sharing of one
physical processor and main memory amongst many programs, each with its own CPU state and
virtual address space. The OS is effectively creating many virtual machines and choreographing their
execution using a single set of shared physical resources.

The OS runs in a special OS context, which we call the kernel. The OS contains the necessary exception
handlers and timesharing support. Since it has to manage physical memory, it’s allowed to access any
physical location as it deals with page faults, etc. Exceptions in running programs cause the hardware
to switch to the kernel context, which we call entering “kernel mode”. After the exception handling is
complete, execution of the program resumes in what we call “user mode”.

Since the OS runs in kernel mode it has privileged access to many hardware registers that are inaccessi-
ble in user mode. These include the MMU state, I/O devices, and so on. User-mode programs that need
to access, say, the disk, need to make a request to the OS kernel to perform the operation, giving the
0S the chance to vet the request for appropriate permissions, etc. We’ll see how all of this works in an
upcoming lecture.
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Memory Management & Protection

Memory Management & Protection

+ Applications are written as if they have Address Space

access to the entire virtual address space,
without considering where other
applications reside

— Enables fixed conventions (e.g., program starts
at 0x1000, stack is contiguous and grows up,
...) without worrying about conflicts

*+ OS Kernel controls all contexts, prevents
programs from reading and writing into
each other’s memory

Figure 23.

User-mode programs (aka applications) are written as if they have access to the entire virtual address
space. They often obey the same conventions such as the address of the first instruction in the program,
the initial value for the stack pointer, etc. Since all these virtual addresses are interpreted using the
current context, by controlling the contexts the OS can ensure that the programs can coexist without
conflict.

The diagram on the right shows a standard plan for organizing the virtual address space of an applica-
tion. Typically the first virtual page is made inaccessible, which helps catch errors involving references
to initialized (i.e., zero-valued) pointers. Then come some number of read-only pages that hold the
application’s code and perhaps the code from any shared libraries it uses. Marking code pages as
read-only avoids hard-to-find bugs where errant data accesses inadvertently change the program!

Then there are read-write pages holding the application’s statically allocated data structures. The rest
of the virtual address space is divided between two data regions that can grow over time. The first
is the application’s stack, used to hold procedure activation records. Here we show it located at the
lower end of the virtual address space since our convention is that the stack grows towards higher
addresses.

The other growable region is the heap, used when dynamically allocating storage for long-lived data
structures. “Dynamically” means that the allocation and deallocation of objects is done by explicit
procedure calls while the application is running. In other words, we don’t know which objects will be
created until the program actually executes. As shown here, as the heap expands it grows towards
lower addresses.
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The page fault handler knows to allocate new pages when these regions grow. Of course, if they ever
meet somewhere in the middle and more space is needed, the application is out of luck - it’s run out
of virtual memory!

Multi-level Page Maps

Multi-level Page Maps

32-bit virtual address

26)
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PDIR D R PPN D R PPN
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Page Directory Partial Page Table Data
(1 page) (1 page)

Instead of one page map with 220 entries,
“virtualize the page table”:
One permanently-resident page holds “page
directory” which has 1024 entries pointing
to 1024-entry partial page tables in virtual
memory!

Figure 24,

There are a few MMU implementation details we can tweak for more efficiency or functionality.

In our simple page-map implementation, the full page map occupies some number of physical pages.
Using the numbers shown here, if each page map occupies one word of main memory, we’d need 22°

212

words (or 2*“ pages) to hold the page table. If we have multiple contexts, we would need multiple page

tables, and the demands on our physical memory resources would start to get large.

The MMU implementation shown here uses a hierarchical page map. The top 10 bits of virtual address
are used to access a “page directory”, which indicates the physical page that holds the page map for
that segment of the virtual address space. The key idea is that the page map segments are in virtual
memory, i.e., they don’t all have to be resident at any given time. If the running application is only
actively using a small portion of its virtual address space, we may only need a handful of pages to hold
the page directory and the necessary page map segments. The resultant savings really add up when
there are many applications, each with their own context.

In this example, note that the middle entries in the page directory, i.e., the entries corresponding to the
as-yet unallocated virtual memory between the stack and heap, are all marked as not resident. So no
page map resources need be devoted to holding a zillion page map entries all marked “not resident”.
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Accessing the page map now requires two access to main memory (first to the page directory, then to
the appropriate segment of the page map), but the TLB makes the impact of that additional access
negligible.

Rapid Context Switching

Rapid Contex -Switching

Add a register to hold index of current context. To
switch contexts: update Context # and PageTblPtr
registers. Don’t have to flush TLB since each
entry’s tag includes context # in addition to virtual
page number

Context #Virtual Address  physical Memory
C t t & V t a] b irrq;j;éiﬁii 777777777777
ontex irtual page number PageTblPtr physical
: ‘ | page
i number
L +
TLB miss

Figure 25,

Normally when changing contexts, the OS would reload the page-table pointer to point to the appro-
priate page table (or page table directory if we adopt the scheme from the previous slide). Since this
context switch in effect changes all the entries in the page table, the OS would also have to invalidate
all the entries in the TLB cache. This naturally has a huge impact on the TLB hit ratio and the average
memory access time takes a huge hit because of the all page map accesses that are now necessary
until the TLB is refilled.

To reduce the impact of context switches, some MMUs include a context-number register whose
contents are concatenated with the virtual page number to form the query to the TLB. Essentially this
means that the tag field in the TLB cache entries will expand to include the context number provided
at the time the TLB entry was filled.

To switch contexts, the OS would now reload both the context-number register and the page-table
pointer. With a new context number, entries in the TLB for other contexts would no longer match, so no
need to flush the TLB on a context switch. If the TLB has sufficient capacity to cache the VPN-to-PPN
mappings for several contexts, context switches would no longer have a substantial impact on average
memory access time.
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Using Caches with Virtual Memory

Using Caches with Virtual Memory
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Cache Cache
Tags from virtual addresses Tags from physical addresses
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e Problem: Must flush * SLOW: MMU time on HIT
cache after context
switch

Figure 26.

Finally, let’s return to the question about how to incorporate both a cache and an MMU into our memory
system.

The first choice is to place the cache between the CPU and the MMU, i.e., the cache would work on
virtual addresses. This seems good: the cost of the VPN-to-PPN translation is only incurred on a cache
miss. The difficulty comes when there’s a context switch, which changes the effective contents of
virtual memory. After all that was the point of the context switch, since we want to switch execution to
another program. But that means the OS would have to invalidate all the entries in the cache when
performing a context switch, which makes the cache miss ratio quite large until the cache is refilled.
So once again the performance impact of a context switch would be quite high.

We can solve this problem by caching physical addresses, i.e., placing the cache between the MMU
and main memory. Thus the contents of the cache are unaffected by context switches - the requested
physical addresses will be different, but the cache handles that in due course. The downside of this
approach is that we have to incur the cost of the MMU translation before we can start the cache access,
slightly increasing the average memory access time.
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Best of Both Worlds: Overlapped Operation

Best of Both Worlds: Overlapped Operation
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Figure 27.

But if we're clever we don’t have to wait for the MMU to finish before starting the access to the cache. To
get started, the cache needs the line number from the virtual address in order to fetch the appropriate
cache line. If the address bits used for the line number are completely contained in the page offset of
the virtual address, those bits are unaffected by the MMU translation, and so the cache lookup can
happen in parallel with the MMU operation.

Once the cache lookup is complete, the tag field of the cache line can be compared with the appropriate
bits of the physical address produced by the MMU. If there was a TLB hit in the MMU, the physical
address should be available at about the same time as the tag field produced by the cache lookup.

By performing the MMU translation and cache lookup in parallel, there’s usually no impact on the
average memory access time! Voila, the best of both worlds: a physically addressed cache that incurs
no time penalty for MMU translation.

One final detail: one way to increase the capacity of the cache is to increase the number of cache lines
and hence the number of bits of address used as the line number. Since we want the line number to fit
into the page offset field of the virtual address, we’re limited in how many cache lines we can have.
The same argument applies to increasing the block size. So to increase the capacity of the cache our
only option is to increase the cache associativity, which adds capacity without affecting the address
bits used for the line number.
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Summary: Virtual Memory

Summary: Virtual Memory

* Goal 1: Exploit locality on a large scale

Programmers want a large, flat address space, but use a
small portion!
Solution: Cache working set into RAM from disk
Basic implementation: MMU with single-level page map
+ Access loaded pages via fast hardware path
* Load virtual memory on demand: page faults
Several optimizations:
* Moving page map to RAM, for cost reasons
* Translation Lookaside Buffer (TLB) to regain performance

Cache/VM interactions: Can cache physical or virtual
locations

*+ Goals 2 & 3: Ease memory management, protect
multiple contexts from each other

Figure 28.

We’ll see these in detail on the next lecture!

That’s it for our discussion of virtual memory. We use the MMU to provide the context for mapping

virtual addresses to physical addresses. By switching contexts we can create the illusion of many virtual

address spaces, so many programs can share a single CPU and physical memory without interfering

with each other.

We discussed using a page map to translate virtual page numbers to physical page numbers. To save

costs, we located the page map in physical memory and used a TLB to eliminate the cost of accessing

the page map for most virtual memory accesses. Access to a non-resident page causes a page fault

exception, allowing the OS to manage the complexities of equitably sharing physical memory across

many applications.

We saw that providing contexts was the first step towards creating virtual machines, which is the topic

of our next lecture.
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