Computation Structures - Lecture 14

Caches and the Memory Hierarchy

Computation Structures - Lecture 14

About

This document is part of the "Computation Structures" course, available at https://PersonalComput
e.net/resources/computation-structures.

The objective of this course is to provide a solid foundation on the inner workings of computers, and
how to use them efficiently. Practically, it tries to answer the question "Why is my computer working
like this?" (where "like this" can mean "slow", "fast", "efficient" or "intermittently freezing").

Its intended audience is first and second-year university students, so its prerequisites are high-school
levels of understanding for math and physics, and a beginner-level understanding of programming. It
is also very useful to anyone whose job involves programming, but hasn’t taken a formal course in
Computer Architectures - a topic that is often overlooked in software or math-oriented degrees.

The Course Contents chapters use the materials from the original course (the MIT OpenCourseWare
release), with very small changes (mostly cosmetic in nature).

Where existing, the Real World Implications chapters provide some additional context and explana-
tions, not present in the MIT OpenCourseWare edition.

If you wish to download the "source code" for the course, go to https://github.com/PersonalCompute-
net/computation-structures/.

Credits

Computation Structures (6.004), Spring 2017 - Original course content, from MIT OpenCourseWare.
Course led by Chris Terman, at MIT.
Originally published at https://ocw.mit.edu/6-004S17 and https://github.com/computation-
structures/course/.
Licensed under Creative Commons BY-NC-SA 4.0 - https://ocw.mit.edu/terms.

Eisvogel - LaTeX template and cover artwork.
Created by Pascal Wagler - https://github.com/Wandmalfarbe/.
Originally published at https://github.com/Wandmalfarbe/pandoc-latex-template/.
Licensed under BSD 3-clause license.

Licensing

This work is licensed under a Creative Commons “Attribution- @@@@
NonCommercial-ShareAlike 4.0 International” license.

URL: https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en

https://PersonalCompute.net/resources/computation-structures
https://PersonalCompute.net/resources/computation-structures
https://github.com/PersonalCompute-net/computation-structures/
https://github.com/PersonalCompute-net/computation-structures/
https://ocw.mit.edu/6-004S17
https://github.com/computation-structures/course/
https://github.com/computation-structures/course/
https://ocw.mit.edu/terms
https://github.com/Wandmalfarbe/
https://github.com/Wandmalfarbe/pandoc-latex-template/
https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en
https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en
https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en

Computation Structures - Lecture 14

Course Contents
Our Memory Machine

Me
Our “Cmné"&’iﬁg Machine”

We need to fetch one
instruction each cycle

Ultimately
data is
loaded
from and
results
stored to
merrlwr’y

'

Figure 1.

In the last lecture we completed the design of the Beta, our reduced-instruction-set computer. The
simple organization of the Beta ISA meant that there was a lot commonality in the circuity needed to
implement the instructions. The final design has a few main building blocks with MUX steering logic to

select input values as appropriate.

If we were to count MOSFETs and think about propagation delays, we’d quickly determine that our
3-port main memory (shown here as the two yellow components) was the most costly component
both in terms of space and percentage of the cycle time required by the memory accesses. So in many
ways, we really have a “memory machine” instead of a “computing machine”.

The execution of every instruction starts by fetching the instruction from main memory. And ultimately
all the data processed by the CPU is loaded from or stored to main memory. A very few frequently-used
variable values can be kept in the CPU’s register file, but most interesting programs manipulate much
more data than can be accommodated by the storage available as part of the CPU datapath.

In fact, the performance of most modern computers is limited by the bandwidth, i.e., bytes/second, of
the connection between the CPU and main memory, the so-called memory bottleneck. The goal of this
lecture is to understand the nature of the bottleneck and to see if there are architectural improvements
we might make to minimize the problem as much as possible.

Computation Structures - Lecture 14

Memory Technologies

Memory Technologies

Technologies have vastly different tradeoffs between
capacity, access latency, bandwidth, energy, and cost

— ... and logically, different applications

Processor

Register 1000s of bits 20 ps 3% Datapath
SRAM ~10 KB-10 MB I-10 ns ~$1000 Memory
DRAM ~10 GB 80 ns ~$10 Hierarchy
Flash* ~100 GB 100 us ~$1 /o

Hard disk* ~ITB 10 ms ~$0.10 subsystem

* non-volatile (retains contents when powered off)

Figure 2.

We have a number of memory technologies at our disposal, varying widely in their capacity, latency,
bandwidth, energy efficiency and their cost. Not surprisingly, we find that each is useful for different
applications in our overall system architecture.

Our registers are built from sequential logic and provide very low latency access (20ps or so) to at most
a few thousands of bits of data. Static and dynamic memories, which we’ll discuss further in the coming
slides, offer larger capacities at the cost of longer access latencies. Static random-access memories
(SRAMs) are designed to provide low latencies (a few nanoseconds at most) to many thousands of
locations. Already we see that more locations means longer access latencies - this is a fundamental
size vs. performance tradeoff of our current memory architectures. The tradeoff comes about because
increasing the number of bits will increase the area needed for the memory circuitry, which will in turn
lead to longer signal lines and slower circuit performance due to increased capacitive loads.

Dynamic random-access memories (DRAMs) are optimized for capacity and low cost, sacrificing access
latency. Aswe’ll see in this lecture, we’ll use both SRAMs and DRAMs to build a hybrid memory hierarchy
that provides low average latency and high capacity - an attempt to get the best of both worlds!

Notice that the word “average” has snuck into the performance claims. This means that we’ll be relying
on statistical properties of memory accesses to achieve our goals of low latency and high capacity.
In the worst case, we’ll still be stuck with the capacity limitations of SRAMs and the long latencies of
DRAMSs, but we’ll work hard to ensure that the worst case occurs infrequently!

Flash memory and hard-disk drives provide non-volatile storage. Non-volatile means that the memory
contents are preserved even when the power is turned off. Hard disks are at the bottom of the memory

3

Computation Structures - Lecture 14

hierarchy, providing massive amounts of long-term storage for very little cost. Flash memories, with a
100-fold improvement in access latency, are often used in concert with hard-disk drives in the same
way that SRAMs are used in concert with DRAMs, i.e., to provide a hybrid system for non-volatile storage
that has improved latency and high capacity.

Let’s learn a bit more about each of these four memory technologies, then we’ll return to the job of

building our memory system.

Static RAM (SRAM)

Static RAM (SRAM)

Data in Drivers
¢ _|m| m| |m| |m| |m| [m
‘m| (m] (] [m] [m] [,
m| [[w e (e .|
Address m - m Q - m r:s:ii!:z;)
= (m] (m] [m] (w] (=] (=
3 ﬂ | 4:" 4:'» - €:ﬁi;(Bitlin.esl
ﬂ Rz 4:" 4:" - “:‘“ twoper'cell)
Address
decoder\ _L'__‘_ —D_ —m_ _m_ _D_ _L'_—l_
e VY Y Y Y Y S
6&Dam out

Figure 3.

SRAMs are organized as an array of memory locations, where a memory access is either reading or
writing all the bits in a single location. Here we see the component layout for a 8-location SRAM array
where each location holds 6 bits of data. You can see that the individual bit cells are organized as 8
rows (one row per location) by 6 columns (one column per bit in each memory word). The circuitry
around the periphery is used to decode addresses and support read and write operations.

To access the SRAM, we need to provide enough address bits to uniquely specify the location. In this
case we need 3 address bits to select one of the 8 memory locations. The address decoder logic sets
one of the 8 wordlines (the horizontal wires in the array) high to enable a particular row (location) for
the upcoming access. The remaining wordlines are set low, disabling the cells they control. The active
wordline enables each of the SRAM bit cells on the selected row, connecting each cell to a pair of bit
lines (the vertical wires in the array). During read operations the bit lines carry the analog signals from
the enabled bit cells to the sense amplifiers, which convert the analog signals to digital data. During
write operations incoming data is driven onto the bit lines to be stored into the enabled bit cells.

Computation Structures - Lecture 14

Larger SRAMs will have a more complex organization in order to minimize the length, and hence the
capacitance, of the bit lines.

SRAM Cell
SRAM Cell
6-MOSFET (6T) cell:
— Two CMOS inverters (4 MOSFETSs) forming a bistable
element
— Two access transistors
Bistable element
bitline bitine (two stable states)
6T SRAM Cell stores a single bit
Vdd EszND o
—] GND Vdd 0"
Wordline N ‘ access FETs
Figure 4.

The heart of the SRAM are the bit cells. The typical cell has two CMOS inverters wired in a positive
feedback loop to create a bistable storage element. The diagram on the right shows the two stable
configurations. In the top configuration, the cell is storing a 1 bit. In the bottom configuration, it’s
storing a 0 bit. The cell provides stable storage in the sense that as long as there’s power, the noise
immunity of the inverters will ensure that the logic values will be maintained even if there’s electrical
noise on either inverter input.

Both sides of the feedback loop are connected via access FETs to the two vertical bit lines. When the
wordline connected to the gates of the access FETs is high, the FETs are on, i.e., they will make an
electrical connection between the cell’s internal circuity and the bitlines. When the wordline is low,
the access FETs are off and the bistable feedback loop is isolated from the bitlines and will happily
maintain the stored value as long as there’s power.

Computation Structures - Lecture 14

SRAM Read
SRAM Read
Q’-‘ OROEER a@E 5 1. Drivers precharge all
] m| [m
EIITEL E‘L EF (] (o] bitlines to Vdd (1), and
_E_E_E_E_E_E- leave them floating
| pE e e pew) pen pEe 2. Address decoder
=] o] [eu] o= o] (o] - .
=] (] (o] o]] [activates one wordline
i i i i s i e 3. Each cell in the
WO YYY Y activated word slowly
bitline bitline pulls down one of the
vdd 6T SRAM Cell vad@ bitlines to GND (0)
4. Sense amplifiers sense
change in bitline
, voltages, producing
wordline access FETs
GND-Vdd |, V(o) OFF>ON V() © outputdata
o Il.."¢ -,
Figure 5.

During a read operation, the drivers first recharge all the bitlines to Vdd (i.e., a logical 1 value) and then
disconnect, leaving the bitlines floating at 1. Then the address decoder sets one of the wordlines high,
connecting a row of bit cells to their bitlines. Each cell in the selected row then pulls one of its two
bitlines to GND. In this example, it’s the right bitline that’s pulled low. Transitions on the bitlines are
slow since the bitline has a large total capacitance and the MOSFETs in the two inverters are small to
keep the cell as small as possible. The large capacitance comes partly from the bitline’s length and
partly from the diffusion capacitance of the access FETs in other cells in the same column.

Rather than wait for the bitline to reach a valid logic level, sense amplifiers are used to quickly detect
the small voltage difference developing between the two bitlines and generate the appropriate digital
output. Since detecting small changes in a voltage is very sensitive to electrical noise, the SRAM uses a
pair of bitlines for each bit and a differential sense amplifier to provide greater noise immunity.

As you can see, designing a low-latency SRAM involves a lot of expertise with the analog behavior of
MOSFETs and some cleverness to ensure electrical noise will not interfere with the correct operation of

the circuitry.

Computation Structures - Lecture 14

SRAM Write

1. Drivers set and hold
bitlines to desired values
(Vdd and GND for 1, GND
and Vdd for 0)

2. Address decoder activates
one wordline

) bitline bitline o 3. Each cell in word is
GND Vdd

@) overpowered by the
drivers, stores value

All transistors are carefully sized
access FETs ‘ so that bitline GND overpowers

wordline
GND->Vdd

(2

OFF2ON

cell Vdd, but bitline Vdd does not
overpower cell GND (why?)

Figure 6.

Write operations start by driving the bitlines to the appropriate values. In the example shown here, we
want to write a 0-bit into the cell, so the left bitline is set to GND and the right bitline is set to VDD. As
before, the address decoder then sets one of the wordlines high, selecting all the cells in a particular
row for the write operation.

The drivers have much larger MOSFETs than those in the cell’s inverters, so the internal signals in the
enabled cells are forced to the values on the bitlines and the bistable circuits “flip” into the new stable
configuration. We’re basically shorting together the outputs of the driver and the internal inverter, so
this is another analog operation! This would be a no-no in a strictly digital circuit.

Since n-fets usually carry much higher source-drain currents than p-fets of the same width and given
the threshold-drop of the n-fet access transistor, almost all the work of the write is performed by the
large n-fet pulldown transistor connected to the bitline with the 0 value, which easily overpowers the
small p-fet pullup of the inverters in the cell. Again, SRAM designers need a lot of expertise to correctly
balance the sizes of MOSFETSs to ensure fast and reliable write operations.

Computation Structures - Lecture 14

Multiported SRAMs

Multiported SRAMs

* SRAM so far can do either one read or one
write/cycle

* We can do multiple reads and writes with multiple
ports by adding one set of wordlines and bitlines
per port

* Cost/bit? For N ports... wwwww#—%"

— Wordlines: N S R A o o 1 i

— Bitlines: 2*N P

~ Access FETs: 2N _ [HISTHEIEIETIEIE

| | S

ettt
S=i=i=s s

Figure 7.

It’s not hard to augment the SRAM to support multiple read/write ports, a handy addition for register
file circuits. We’'ll do this by adding additional sets of wordlines, bitlines, drivers, and sense amps. This
will give us multiple paths to independently access the bistable storage elements in the various rows
of the memory array.

With an N-port SRAM, for each bit we’ll need N wordlines, 2N bitlines and 2N access FETs. The additional
wordlines increase the effective height of the cell and the additional bitlines increase the effective
width of the cell and so the area required by all these wires quickly dominates the size of the SRAM.
Since both the height and width of a cell increase when adding ports, the overall area grows as the
square of the number of read/write ports. So one has to take care not to gratuitously add ports lest the
cost of the SRAM get out of hand.

Computation Structures - Lecture 14

Summary: SRAM

Summary: SRAMs

* Array of k*b cells (k words, b cells per word)

* Cell is a bistable element + access transistors

— Analog circuit with carefully sized transistors to allow
reads and writes

* Read: Precharge bitlines, activate wordline, sense

« Write: Drive bitlines, activate wordline, overpower
cells

6 MOSFETs/cell... can we do better?

— What’s the minimum number of MOSFETSs needed to store
a single bit?

Figure 8.

In summary, the circuitry for the SRAM is organized as an array of bit cells, with one row for each memory
location and one column for each bit in a location. Each bit is stored by two inverters connected to
form a bistable storage element. Reads and writes are essentially analog operations performed via the
bitlines and access FETSs.

The SRAM uses 6 MOSFETSs for each bit cell. Can we do better? What’s the minimum number of MOSFETs
needed to store a single bit of information?

Computation Structures - Lecture 14

1T Dynamic RAM (DRAM) Cell

1T Dynamic RAM (DRAM) Cell

Cyferz (CC BY 2.5)

Storage I'T DRAM Cell

capacitor word
line
T

access FET
VREF

bitline

C in storage capacitor determined by:

better dielectric more area

\;ﬂ/ Trench capacitors

d N
™ thinner film take little area

v ~20x smaller area than SRAM cell < Denser and cheaper!
x Problem: Capacitor leaks charge, must be refreshed periodically
(~milliseconds)

Figure 9.

Well, we’ll need at least one MOSFET to serve as the access FET so we can select which bits will be
affected by read and write operations. We can use a simple capacitor for storage, where the value of a
stored bit is represented by voltage across the plates of the capacitor. The resulting circuit is termed a
dynamic random-access memory (DRAM) cell.

If the capacitor voltage exceeds a certain threshold, we’re storing a 1 bit, otherwise we’re storing a
0. The amount of charge on the capacitor, which determines the speed and reliability of reading the
stored value, is proportional to the capacitance. We can increase the capacitance by increasing the
dielectric constant of the insulating layer between the two plates of the capacitor, increasing the area
of the plates, or by decreasing the the distance between the plates. All of these are constantly being
improved.

A cross section of a modern DRAM cell is shown here. The capacitor is formed in a large trench dug
into the substrate material of the integrated circuit. Increasing the depth of the trench will increase
the area of the capacitor plates without increasing the cell’s area. The wordline forms the gate of the
N-FET access transistor connecting the outer plate of the capacitor to the bitline. A very thin insulating
layer separates the outer plate from the inner plate, which is connected to some reference voltage
(shown as GND in this diagram). You can Google trench capacitor to get the latest information on the
dimensions and materials used in the construction of the capacitor.

The resulting circuit is quite compact: about 20-times less area/bit than an SRAM bit cell. There are
some challenges however. There’s no circuitry to main the static charge on the capacitor, so stored
charge will leak from the outer plate of the capacitor, hence the name dynamic memory. The leakage

10

Computation Structures - Lecture 14

is caused by small picoamp currents through the PN junction with the surrounding substrate, or
subthreshold conduction of the access FET even when it’s turned off. This limits the amount of time
we can leave the capacitor unattended and still expect to read the stored value. This means we’ll have
to arrange to read then re-write each bit cell (called a refresh cycle) every 10ms or so, adding to the
complexity of the DRAM interface circuitry.

1T DRAM Writes and Reads

DRAM Writes and Reads

¢ Writes: Drive bitline to Vdd or GND,
activate wordline, charge or

discharge capacitor IT DRAM Cell
word
line
B Storage
* Reads: capacitor VT access FET
1. Precharge bitline to Vdd/2 REF
2. Activate wordline ol
bitline

3. Capacitor and bitline share charge
If capacitor was discharged, bitline voltage decreases slightly
If capacitor was charged, bitline voltage increases slightly

Sense bitline to determine if O or 1
Issue: Reads are destructive! (charge is gone!)
— So, data must be rewritten to cell at end of read

Figure 10.

DRAM write operations are straightforward: simply turn on the access FET with the wordline and charge
or discharge the storage capacitor through the bitline.

Reads are bit more complicated. First the bitline is precharged to some intermediate voltage, e.g.,
VDD/2, and then the precharge circuitry is disconnected. The wordline is activated, connecting the
storage capacitor of the selected cell to the bitline causing the charge on the capacitor to be shared
with the charge stored by the capacitance of the bitline. If the value stored by the cell capacitoris a 1,
the bitline voltage will increase very slightly (e.g., a few tens of millivolts). If the stored value is a 0, the
bitline voltage will decrease slightly. Sense amplifiers are used to detect this small voltage change to
produce a digital output value.

This means that read operations wipe out the information stored in the bit cell, which must then be
rewritten with the detected value at the end of the read operation.

DRAM circuitry is usually organized to have wide rows, i.e., multiple consecutive locations are read in a
single access. This particular block of locations is selected by the DRAM row address. Then the DRAM
column address is used to select a particular location from the block to be returned. If we want to read

11

Computation Structures - Lecture 14

multiple locations in a single row, then we only need to send a new column address and the DRAM will
respond with that location without having to access the bit cells again. The first access to a row has a
long latency, but subsequent accesses to the same row have very low latency. As we’ll see, we’ll be
able to use fast column accesses to our advantage.

Summary: DRAM

Summary: DRAM

« 1T DRAM cell: transistor + capacitor

= Smaller than SRAM cell, but destructive reads and
capacitors leak charge

* DRAM arrays include circuitry to:
— Write word again after every read (to avoid losing data)
— Refresh (read+write) every word periodically

« DRAM vs SRAM:
— ~20x denser than SRAM
— ~2-10x slower than SRAM

Figure 11.

In summary, DRAM bit cells consist of a single access FET connected to a storage capacitor that’s
cleverly constructed to take up as little area as possible. DRAMs must rewrite the contents of bit cells
after they are read and every cell must be read and written periodically to ensure that the stored charge
is refreshed before it’s corrupted by leakage currents.

DRAMs have much higher capacities than SRAMs because of the small size of the DRAM bit cells, but
the complexity of the DRAM interface circuitry means that the initial access to a row of locations is
quite a bit slower than an SRAM access. However subsequent accesses to the same row happen at
speeds close to that of SRAM accesses.

Both SRAMs and DRAMs will store values as long as their circuitry has power. But if the circuitry is
powered down, the stored bits will be lost. For long-term storage we will need to use non-volatile
memory technologies, the topic of the next lecture segment.

12

Computation Structures - Lecture 14

Non-Volatile Storage: Flash

Non-Volatile Storage: Flash

Electrons here diminish
strength of field from
control gate = no

Word Line inversion = NFET stays

Control Gate N
Fiout Gate off even when word line

N N is high.
Cyferz (CC BY 2.5)

Flash Memory: Use “floating gate” transistors to store charge
+ Very dense: Multiple bits/transistor, read and written in blocks
Slow (especially on writes), 10-100 us
Limited number of writes: charging/discharging the floating
gate (writes) requires large voltages that damage transistor

Source
Line.

Figure 12,

Non-volatile memories are used to maintain system state even when the system is powered down. In
flash memories, long-term storage is achieved by storing charge on an well-insulated conductor called
a floating gate, where it will remain stable for years. The floating gate is incorporated in a standard
MOSFET, placed between the MOSFET’s gate and the MOSFET’s channel. If there is no charge stored on
the floating gate, the MOSFET can be turned on, i.e., be made to conduct, by placing a voltage V; on
the gate terminal, creating an inversion layer that connects the MOSFET’s source and drain terminals.
If there is a charge stored on the floating gate, a higher voltage V5 is required to turn on the MOSFET.
By setting the gate terminal to a voltage between V; and V5, we can determine if the floating gate is
charged by testing to see if the MOSFET is conducting.

In fact, if we can measure the current flowing through the MOSFET, we can determine how much charge
is stored on the floating gate, making it possible to store multiple bits of information in one flash cell
by varying the amount of charge on its floating gate. Flash cells can be connected in parallel or series
to form circuits resembling CMOS NOR or NAND gates, allowing for a variety of access architectures
suitable for either random or sequential access.

Flash memories are very dense, approaching the areal density of DRAMs, particularly when each cell
holds multiple bits of information.

Read access times for NOR flash memories are similar to that of DRAMs, several tens of nanoseconds.
Read times for NAND flash memories are much longer, on the order of 10 microseconds. Write times
for all types of flash memories are quite long since high voltages have to be used to force electrons to
cross the insulating barrier surrounding the floating gate.

13

Computation Structures - Lecture 14

Flash memories can only be written some number of times before the insulating layer is damaged to
the point that the floating gate will no longer reliably store charge. Currently the number of guaranteed
writes varies between 100,000 and 1,000,000. To work around this limitation, flash chips contain clever
address mapping algorithms so that writes to the same address actually are mapped to different flash
cells on each successive write.

The bottom line is that flash memories are a higher-performance but higher-cost replacement for the
hard-disk drive, the long-time technology of choice for non-volatile storage.

Non-Volatile Storage: Hard Disk

Non-Volatile Storage: Hard Disk

Spindle Head

Actuator Arm Disk head
Actuator Axis

Power Connector
Jumper Block Circular track divided

into sectors

Surachit (CC BY 2.5)

Actuator

IDE Connector
Hard Disk: Rotating magnetic platters + read/write head
+ Extremely slow (~10ms): Mechanically move head to position,
walit for data to pass underneath head
*« ~100MB/s for sequential read/writes
+ ~100KB/s for random read/writes
* Cheap

Figure 13.

A hard-disk drive (HDD) contains one or more rotating platters coated with a magnetic material. The
platters rotate at speeds ranging from 5400 to 15000 RPM. A read/write head positioned above the
surface of a platter can detect or change the orientation of the magnetization of the magnetic material
below. The read/write head is mounted on an actuator that allows it to be positioned over different
circular tracks.

To read a particular sector of data, the head must be positioned radially over the correct track, then wait
for the platter to rotate until it’s over the desired sector. The average total time required to correctly
position the head is on the order of 10 milliseconds, so hard disk access times are quite long.

However, once the read/write head is in the correct position, data can be transferred at the respectable
rate of 100 megabytes/second. If the head has to be repositioned between each access, the effective
transfer rate drops 1000-fold, limited by the time it takes to reposition the head.

14

Computation Structures - Lecture 14

Hard disk drives provide cost-effective non-volatile storage for terabytes of data, albeit at the cost of
slow access times.

Summary: Memory Technologies

Summary: Memory Technologies

Register 1000s of bits 20 ps $3$3%
SRAM ~10KB-10 MB 1-10 ns ~$1000
DRAM ~10 GB 80 ns ~$10
Flash ~100 GB 100 us ~$1
Hard disk ~1 TB 10 ms ~$0.10

« Different technologies have vastly different tradeoffs
« Size is a fundamental limit, even setting cost aside:

— Small + low latency, high bandwidth, low energy, or
— Large + high-latency, low bandwidth, high energy

* Can we get the best of both worlds? (large, fast,
cheap)

Figure 14.

This completes our whirlwind tour of memory technologies. If you'd like to learn a bit more, Wikipedia
has useful articles on each type of device. SRAM sizes and access times have kept pace with the
improvements in the size and speed of integrated circuits. Interestingly, although capacities and
transfer rates for DRAMs and HDDs have improved, their initial access times have not improved nearly
as rapidly. Thankfully over the past decade flash memories have helped to fill the performance gap
between processor speeds and HDDs. But the gap between processor cycle times and DRAM access
times has continued to widen, increasing the challenge of designing low-latency high-capacity memory
systems.

The capacity of the available memory technologies varies over 10 orders of magnitude, and the variation
in latencies varies over 8 orders of magnitude. This creates a considerable challenge in figuring out
how to navigate the speed vs size tradeoffs.

Each transition in memory hierarchy shows the same fundamental design choice: we can pick smaller-
and-faster or larger-and-slower. This is a bit awkward actually - can we figure how to get the best of
both worlds?

15

Computation Structures - Lecture 14

Memory Hierarchy Interface

The Memory Hierarchy

Want large, fast, and cheap memory, but...
Large memories are slow (even if built with fast components)
Fast memories are expensive

Idea: Can we use a hierarchal system of memories
with different tradeoffs to emulate a large, fast, cheap
memory?

= <

Speed: Fastest Slowest Fast
Capacity: Smallest Largest Large
Cost: Highest Lowest Cheap

Figure 15.

We want our system to behave as if it had a large, fast, and cheap main memory. Clearly we can’t
achieve this goal using any single memory technology.

Here’s an idea: can we use a hierarchical system of memories with different tradeoffs to achieve close
to the same results as a large, fast, cheap memory? Could we arrange for memory locations we’re
using often to be stored, say, in SRAM and have those accesses be low latency? Could the rest of the
data could be stored in the larger and slower memory components, moving the between the levels
when necessary? Let’s follow this train of thought and see where it leads us.

16

Computation Structures - Lecture 14

Memory Hierarchy Interface (continued)

Memory Hierarchy Interface

Approach 1: Expose Hierarchy

— Registers, SRAM, DRAM, D
Flash, Hard Disk each
available as storage
alternatives

— Tell programmers: “Use them cleverly”

Approach 2: Hide Hierarchy
— Programming model: Single memory, single address space

— Machine transparently stores data in fast or slow memory,
depending on usage patterns

X? | Cache Main memory Swap space

Figure 16.

There are two approaches we might take. Thefirst is to expose the hierarchy, providing some amount of
each type of storage and let the programmer decide how best to allocate the various memory resources
for each particular computation. The programmer would write code that moved data into fast storage
when appropriate, then back to the larger and slower memories when low-latency access was no longer
required. There would only be a small amount of the fastest memory, so data would be constantly in
motion as the focus of the computation changed.

This approach has had notable advocates. Perhaps the most influential was Seymour Cray, the “Steve
Jobs” of supercomputers. Cray was the architect of the world’s fastest computers in each of three
decades, inventing many of the technologies that form the foundation of high-performance computing.
His insight to managing the memory hierarchy was to organize data as vectors and move vectors in and
out of fast memory under program control. This was actually a good data abstraction for certain types
of scientific computing and his vector machines had the top computing benchmarks for many years.

The second alternative is to hide the hierarchy and simply tell the programmer they have a large,
uniform address space to use as they wish. The memory system would, behind the scenes, move data
between the various levels of the memory hierarchy, depending on the usage patterns it detected. This
would require circuitry to examine each memory access issued by the CPU to determine where in the
hierarchy to find the requested location. And then, if a particular region of addresses was frequently
accessed - say, when fetching instructions in a loop - the memory system would arrange for those
accesses to be mapped to the fastest memory component and automatically move the loop instructions
there. All of this machinery would be transparent to the programmer: the program would simply fetch
instructions and access data and the memory system would handle the rest.

17

Computation Structures - Lecture 14

Could the memory system automatically arrange for the right data to be in the right place at the right
time? Cray was deeply skeptical of this approach. He famously quipped “that you can’t fake what you
haven’t got”. Wouldn’t the programmer, with her knowledge of how data was going to be used by a
particular program, be able to do a better job by explicitly managing the memory hierarchy?

It turns out that when running general-purpose programs, it is possible to build an automatically
managed, low-latency, high-capacity hierarchical memory system that appears as one large, uniform
memory. What’s the insight that makes this possible? That’s the topic of the next section.

The Locality Principle

The Locality Principle

Keep the most often-used data in a small, fast
SRAM (often local to CPU chip)

Refer to Main Memory only rarely, for remaining
data.

The reason this strategy works: LOCALITY

Locality of Reference:

Access to address X at time t implies that
access to address X+AX at time t+At becomes
more probable as AX and At approach zero.

Figure 17.

So, how can the memory system arrange for the right data to be in the right place at the right time? Our
goal is to have the frequently-used data in some fast SRAM. That means the memory system will have
to be able to predict which memory locations will be accessed. And to keep the overhead of moving
data into and out of SRAM manageable, we’d like to amortize the cost of the move over many accesses.
In other words we want any block of data we move into SRAM to be accessed many times.

When not in SRAM, data would live in the larger, slower DRAM that serves as main memory. If the
system is working as planned, DRAM accesses would happen infrequently, e.g., only when it’s time to
bring another block of data into SRAM.

If we look at how programs access memory, it turns out we can make accurate predictions about which
memory locations will be accessed. The guiding principle is locality of reference which tells us that if
there’s an access to address X at time t, it’s very probable that the program will access a nearby location
in the near future.

18

Computation Structures - Lecture 14

Memory Reference Patterns

Memory Reference Patterns

S is the set of
locations accessed

address R . o2% during At.
| Dttt IR o Working set: a set S
data esn v este o “25: which changes slowly

wrt access time.

Working set size, | S|

S|

code o L o* . LI]
.

Figure 18.

To understand why programs exhibit locality of reference, let’s look at how a running program accesses
memory.

Instruction fetches are quite predictable. Execution usually proceeds sequentially since most of the
time the next instruction is fetched from the location after that of the current instruction. Code that
loops will repeatedly fetch the same sequence of instructions, as shown here on the left of the time
line. There will of course be branches and subroutine calls that interrupt sequential execution, but
then we’re back to fetching instructions from consecutive locations. Some programming constructs,
e.g., method dispatch in object-oriented languages, can produce scattered references to very short
code sequences (as shown on the right of the time line) but order is quickly restored.

This agrees with our intuition about program execution. For example, once we execute the first
instruction of a procedure, we’ll almost certainly execute the remaining instructions in the procedure.
Soif we arranged for all the code of a procedure to moved to SRAM when the procedure’s first instruction
was fetched, we’'d expect that many subsequent instruction fetches could be satisfied by the SRAM.
And although fetching the first word of a block from DRAM has relatively long latency, the DRAM’s
fast column accesses will quickly stream the remaining words from sequential addresses. This will
amortize the cost of the initial access over the whole sequence of transfers.

The story is similar for accesses by a procedure to its arguments and local variables in the current stack
frame. Again there will be many accesses to a small region of memory during the span of time we’re
executing the procedure’s code.

Data accesses generated by LD and ST instructions also exhibit locality. The program may be accessing

19

Computation Structures - Lecture 14

the components of an object or struct. Or it may be stepping through the elements of an array. Some-
times information is moved from one array or data object to another, as shown by the data accesses
on the right of the timeline.

Using simulations we can estimate the number of different locations that will be accessed over a
particular span of time. What we discover when we do this is the notion of a working set of locations
that are accessed repeatedly. If we plot the size of the working set as a function of the size of the time
interval, we see that the size of the working set levels off. In other words once the time interval reaches
a certain size the number of locations accessed is approximately the same independent of when in
time the interval occurs.

As we see in our plot to the left, the actual addresses accessed will change, but the number of different
addresses during the time interval will, on the average, remain relatively constant and, surprisingly,
not all that large!

This means that if we can arrange for our SRAM to be large enough to hold the working set of the
program, most accesses will be able to be satisfied by the SRAM. We’ll occasionally have to move new
data into the SRAM and old data back to DRAM, but the DRAM access will occur less frequently than
SRAM accesses. We'll work out the mathematics in a slide or two, but you can see that thanks to locality
of reference we’re on track to build a memory out of a combination of SRAM and DRAM that performs
like an SRAM but has the capacity of the DRAM.

Caches

Caches

Cache: A small, interim storage component that
transparently retains (caches) data from recently
accessed locations

— Very fast access if data is cached, otherwise
accesses slower, larger cache or memory
— Exploits the locality principle

Computer systems often use multiple levels of caches

Caching widely applied beyond hardware (e.g., web
caches)

Figure 19.

20

Computation Structures - Lecture 14

The SRAM component of our hierarchical memory system is called a cache. It provides low-latency
access to recently-accessed blocks of data. If the requested data is in the cache, we have a cache hit
and the data is supplied by the SRAM.

If the requested data is not in the cache, we have a cache miss and a block of data containing the
requested location will have to be moved from DRAM into the cache. The locality principle tells us that
we should expect cache hits to occur much more frequently than cache misses.

Modern computer systems often use multiple levels of SRAM caches. The levels closest to the CPU are
smaller but very fast, while the levels further away from the CPU are larger and hence slower. A miss at
one level of the cache generates an access to the next level, and so on until a DRAM access is needed to
satisfy the initial request.

Cachingis used in many applications to speed up access to frequently-accessed data. For example, your
browser maintains a cache of frequently-accessed web pages and uses its local copy of the web page if
it determines the data is still valid, avoiding the delay of transferring the data over the Internet.

A Typical Memory Hierarchy

A Typical Memory Hierarchy

» Everything is a cache for something else...

On the

datapath I:l | cycle | KB Software/Compiler
2-4 cycles 32 KB Hardware
10 cycles 256 KB Hardware
On chip 40 cycles 10 MB Hardware
Other 200 cycles 10 GB Software/OS
chips
10-100us 100 GB Software/OS
Mechanical ﬁ 10ms I TB Software/OS

devices

Figure 20.

Here’s an example of a memory hierarchy that might be found on a modern computer. There are three
levels of on-chip SRAM caches, followed by DRAM main memory and a flash-memory cache for the
hard disk drive. The compiler is responsible for deciding which data values are kept in the CPU registers
and which values require the use of LDs and STs. The 3-level cache and accesses to DRAM are managed
by circuity in the memory system. After that the access times are long enough (many hundreds of

21

Computation Structures - Lecture 14

instruction times) that the job of managing the movement of data between the lower levels of the
hierarchy is turned over to software.

Today we’re discussing how the on-chip caches work. In a later lecture, we’ll discuss how the software
manages main memory and non-volatile storage devices. Whether managed by hardware or software,
each layer of the memory system is designed to provide lower-latency access to frequently-accessed
locationsin the next, slower layer. But, as we’ll see, the implementation strategies will be quite different
in the slower layers of the hierarchy.

Cache Access

Cache Access

0x6004
DATA
0x6034 0x6034
DATA DATA

LD 0x6004
LD 0x6034

* Processor sends address to cache
« Two options:
— Cache hit: Data for this address in cache, returned quickly
— Cache miss: Data not in cache
* Fetch data from memory, send it back to processor
* Retain this data in the cache (replacing some other data)
— Processor must deal with variable memory access time

Figure 21.

Okay, let’s review our plan. The processor starts an access by sending an address to the cache. If data
for the requested address is held in the cache, it’s quickly returned to the CPU.

If the data we request is not in the cache, we have a cache miss, so the cache has to make a request to
main memory to get the data, which it then returns to processor. Typically the cache will remember
the newly fetched data, possibly replacing some older data in the cache.

Suppose a cache access takes 4 ns and a main memory access takes 40 ns. Then an access that hits
in the cache has a latency of 4 ns, but an access that misses in the cache has a latency of 44 ns. The
processor has to deal with the variable memory access time, perhaps by simply waiting for the access
to complete, or, in modern hyper-threaded processors, it might execute an instruction or two from
another programming thread.

22

Computation Structures - Lecture 14

Cache Metrics

Cache Metrics

hits

Hit Ratio: HR = =1-MR

hits + misses

Miss Ratio: MR = __Misses

=————=1-HR
hits + misses

Average Memory Access Time (AMAT):
AMAT = HitTime + MissRatio X MissPenalty

— Goal of caching is to improve AMAT

— Formula can be applied recursively in multi-level
hierarchies:

AMAT = HitTime,, + MissRatio,, x AMAT, , =
AMAT = HitTime,, + MissRatio,, x (HitTime,, + MissRatio,, x AMAT, ;) = ...

Figure 22.

The hit and miss ratios tell us the fraction of accesses which are cache hits and the fraction of accesses
which are cache misses. Of course, the ratios will sum to 1.

Using these metrics we can compute the average memory access time (AMAT). Since we always check
in the cache first, every access includes the cache access time (called the hit time). If we miss in the
cache, we have to take the additional time needed to access main memory (called the miss penalty).
But the main memory access only happens on some fraction of the accesses: the miss ratio tells us
how often that occurs.

So the AMAT can be computed using the formula shown here. The lower the miss ratio (or, equivalently,
the higher the hit ratio), the smaller the average access time. Our design goal for the cache is to achieve
a high hitratio.

If we have multiple levels of cache, we can apply the formula recursively to calculate the AMAT at each
level of the memory. Each successive level of the cache is slower, i.e., has a longer hit time, which is
offset by lower miss ratio because of its increased size.

23

Computation Structures - Lecture 14

Example: How High of a Hit Ratio?

Example: How High of a Hit Ratio?

4 cycles 100 cycles

What hit ratio do we need to break even?
(Main memory only: AMAT = 100)

100 =4 + (1 - HR) x 100 = HR = 4%

What hit ratio do we need to achieve AMAT = 5 cycles?
5=4+(1-HR) X 100 = HR =99%

Figure 23.

Let’s try out some numbers. Suppose the cache takes 4 processor cycles to respond, and main memory
takes 100 cycles. Without the cache, each memory access would take 100 cycles. With the cache, a
cache hit takes 4 cycles, and a cache miss takes 104 cycles.

What hit ratio is needed to so that the AMAT with the cache is 100 cycles, the break-even point? Using
the AMAT formula from the previously slide, we see that we only need a hit ratio of 4% in order for
memory system of the Cache + Main Memory to perform as well as Main Memory alone. The idea, of
course, is that we’ll be able to do much better than that.

Suppose we wanted an AMAT of 5 cycles. Clearly most of the accesses would have to be cache hits. We
can use the AMAT formula to compute the necessary hit ratio. Working through the arithmetic we see
that 99% of the accesses must be cache hits in order to achieve an average access time of 5 cycles.

Could we expect to do that well when running actual programs? Happily, we can come close. In
a simulation of the Spec CPU2000 Benchmark?, the hit ratio for a standard-size level 1 cache was
measured to be 97.5% over some ~10 trillion accesses.

See the “All benchmarks” arithmetic-mean table at “Cache Performance for SPEC CPU2000 Bench-
marks”2 Jason F. Cantin and Mark D. Hill.

1 Spec CPU2000 Benchmark - https://www.spec.org/cpu2000/.

2 Cache Performance for SPEC CPU2000 Benchmarks - http://research.cs.wisc.edu/multifacet/misc/spec2000cache-data/.

24

https://www.spec.org/cpu2000/
http://research.cs.wisc.edu/multifacet/misc/spec2000cache-data/

Computation Structures - Lecture 14

Basic Cache Algorithm
Basic Cache Algorithm
ON REFERENCE TO Mem[X]:
Look for X among cache tags...
CPU
HIT: X = TAG(i} , for some cache line i
* READ: return DATA()
Tag Data *+ WRITE: change DATA(i); Start Write to Mem(X)
A | Mem[A] MISS: X not found in TAG of any cache line
B | Mem[B] « REPLACEMENT SELECTION:
Select some line k to hold Mem[X] (Allocation)
(1-HR) * READ: Read Mem[X]
Set TAG(k)=X, DATA(k)=Mem[X]
MAIN
MEMORY + WRITE: Start Write to Mem(X)
Set TAG(k)=X, DATA(k)= new Mem([X]
Q: How do we “search” the cache?
Figure 24.

Here’s a start at building a cache. The cache will hold many different blocks of data; for now let’s
assume each block is an individual memory location. Each data block is tagged with its address. A
combination of a data block and its associated address tag is called a cache line.

When an address is received from the CPU, we’ll search the cache looking for a block with a matching
address tag. If we find a matching address tag, we have a cache hit. On a read access, we’ll return the
data from the matching cache line. On a write access, we’ll update the data stored in the cache line
and, at some point, update the corresponding location in main memory.

If no matching tag is found, we have a cache miss. So we’ll have to choose a cache line to use to hold
the requested data, which means that some previously cached location will no longer be found in the
cache. For a read operation, we’ll fetch the requested data from main memory, add it to the cache
(updating the tag and data fields of the cache line) and, of course, return the data to the CPU. On a write,
we’ll update the tag and data in the selected cache line and, at some point, update the corresponding
location in main memory.

So the contents of the cache are determined by the memory requests made by the CPU. If the CPU
requests a recently-used address, chances are good the data will still be in the cache from the previous
access to the same location. As the working set slowly changes, the cache contents will be updated as
needed. If the entire working set can fit into the cache, most of the requests will be hits and the AMAT
will be close to the cache access time. So far, so good!

Of course, we’ll need to figure how to quickly search the cache, i.e., we’ll a need fast way to answer the
question of whether a particular address tag can be found in some cache line. That’s our next topic.

25

Computation Structures - Lecture 14

Direct-Mapped Caches

Direct-Mapped Caches

*+ Each word in memory maps into a single cache line

* Access (for cache with 2W lines):
— Index into cache with W address bits (the index bits)
— Read out valid bit, tag, and data
— If valid bit == 1 and tag matches upper address bits, HIT

Valid bit Tag (27 bits) Data (32 bits)
Example: 8-location DM cache (W=3) ||
] |
32-bit BYTE address -
I 0000 111p19 il
Tag Index Offset L
bits bits bits f:') HIT

Figure 25.

The simplest cache hardware consists of an SRAM with a few additional pieces of logic. The cache
hardware is designed so that each memory location in the CPU’s address space maps to a particular
cache line, hence the name direct-mapped (DM) cache. There are, of course, many more memory
locations then there are cache lines, so many addresses are mapped to the same cache line and the
cache will only be able to hold the data for one of those addresses at a time.

The operation of a DM cache is straightforward. We’'ll use part of the incoming address as an index to
select a single cache line to be searched. The search consists of comparing the rest of the incoming
address with the address tag of the selected cache line. If the tag matches the address, there’s a cache
hit and we can immediately use the data in the cache to satisfy the request.

In this design, we've included an additional valid bit which is 1 when the tag and data fields hold valid
information. The valid bit for each cache line is initialized to 0 when the cache is powered on, indicating
that all cache lines are empty. As data is brought into the cache, the valid bit is set to 1 when the cache
line’s tag and data fields are filled. The CPU can request that the valid bit be cleared for a particular
cache line - this is called flushing the cache. If, for example, the CPU initiates a read from disk, the
disk hardware will read its data into a block of main memory, so any cached values for that block will
be out-of-date. So the CPU will flush those locations from the cache by marking any matching cache
lines as invalid.

Let’s see how this works using a small DM cache with 8 lines where each cache line contains a single
word (4 bytes) of data. Here’s a CPU request for the location at byte address OxES8. Since there 4 bytes of
data in each cache line, the bottom 2 address bits indicate the appropriate byte offset into the cached

26

Computation Structures - Lecture 14

word. Since the cache deals only with word accesses, the byte offset bits aren’t used.

Next, we’ll need to use 3 address bits to select which of the 8 cache lines to search. We choose these
cache index bits from the low-order bits of the address. Why? Well, it’s because of locality. The principle
of locality tells us that it’s likely that the CPU will be requesting nearby addresses and for the cache to
perform well, we’d like to arrange for nearby locations to be able to be held in the cache at the same
time. This means that nearby locations will have to be mapped to different cache lines. The addresses
of nearby locations differ in their low-order address bits, so we’ll use those bits as the cache index bits
- that way nearby locations will map to different cache lines.

The data, tag and valid bits selected by the cache line index are read from the SRAM. To complete the
search, we check the remaining address against the tag field of the cache. If they’re equal and the valid
bitis 1, we have a cache hit, and the data field can be used to satisfy the request.

How come the tag field isn’t 32 bits, since we have a 32-bit address? We could have done that, but since
all values stored in cache line 2 will have the same index bits (0b010), we saved a few bits of SRAM and
chose not save those bits in the tag. In other words, there’s no point in using SRAM to save bits we can
generate from the incoming address.

So the cache hardware in this example is an 8-location by 60 bit SRAM plus a 27-bit comparator and a
single AND gate. The cache access time is the access time of the SRAM plus the propagation delays of
the comparator and AND gate. About as simple and fast as we could hope for.

The downside of the simplicity is that for each CPU request, we’re only looking in a single cache location
to see if the cache holds the desired data. Not much of search is it? But the mapping of addresses to
cache lines helps us out here. Using the low-order address bit as the cache index, we’ve arranged for
nearby locations to be mapped to different cache lines. So, for example, if the CPU were executing an
8-instruction loop, all 8 instructions can be held in the cache at the same time. A more complicated
search mechanism couldn’timprove on that. The bottom line: this extremely simple search is sufficient
to get good cache hit ratios for the cases we care about.

27

Computation Structures - Lecture 14

Example: Direct-Mapped Caches

Example: Direct-Mapped Caches

64-line direct-mapped cache 2 64 indexes 2 6 index bits
Read Mem[0x400C]

Valid bit Tag (24 bits) Data (32 bits)
‘O 100 0000 0000 1100 o [1] 0x800058 OxDEADBEEF
TAG: \0x40) e 0x000058 0x08000000
INDEX: Ox3 2 o 0x000058 0x00000007
OFFSET: 0x0 J 3 1 0x000040 0x42424242
HIT. DATA 0x42424242 4 |1 0x000007 Ox6FBA2381
Would 0x4008 hit? N
INDEX: 0x2 - tag mismatch - miss 63 11 8x0080058 OXxF7324A32

What are the addresses of data in indexes O, 1, and 2?
TAG: 0x58 = 0101 1000 iiii ii00 (substitute line # for iiiiii)) - 0x5800, 0x5804, 0x5808

Part of the address (index bits) is encoded in the location!

Tag + Index bits unambiguously identify the data’s address

Figure 26.

Let’s try a few more examples, in this case using a DM cache with 64 lines.

Suppose the cache gets a read request for location 0x400C. To see how the request is processed, we
first write the address in binary so we can easily divide it into the offset, index and tag fields. For this
address the offset bits have the value 0, the cache line index bits have the value 3, and the tag bits
have the value 0x40. So the tag field of cache line 3 is compared with the tag field of the address. Since
there’s a match, we have a cache hit and the value in the data field of cache line can be used to satisfy
the request.

Would an access to location 0x4008 be a cache hit? This address is similar to that in our first example,
except the cache line index is now 2 instead of 3. Looking in cache line 2, we that its tag field (0x58)
doesn’t match the tag field in the address (0x40), so this access would be a cache miss.

What are the addresses of the words held by cache lines 0, 1, and 2, all of which have the same tag
field? Well, we can run the address matching process backwards! For an address to match these three
cache lines it would have look like the binary shown here, where we’ve used the information in the
cache tag field to fill in the high-order address bits and low-order address bits will come from the index
value. If wefill in the indices 0, 1, and 2, then convert the resulting binary to hex we get 0x5800, 0x5804,
and 0x5808 as the addresses for the data held in cache lines 0, 1, and 2.

Note that the complete address of the cached locations is formed by combining the tag field of the
cache line with the index of the cache line. We of course need to be able to recover the complete address
from the information held in the cache so it can be correctly compared against address requests from
the CPU.

28

Computation Structures - Lecture 14

Block Size

Block Size
Take advantage of locality: increase block size

— Another advantage: Reduces size of tag memory!
— Potential disadvantage: Fewer blocks in the cache

Valid bit Tag (26 bits) Data (4 words, |6 bytes)

Example: 4-block,
16-word DM cache

v ¥ [73 ¥
32-bit BYTE address e 1 - 2 3 7
I I I I Block offset bits: 4 (16 bytes/block)

Tag bits: 26 (=32-4-2) Index bits: 2 (4 indexes)

Figure 27.

We can tweak the design of the DM cache a little to take advantage of locality and save some of the
overhead of tag fields and valid bits.

We can increase the size of the datafield in a cache from 1 word to 2 words, or 4 words, etc. The number
of data words in each cache line is called the block size and is always a power of two. Using a larger
block size makes sense. If there’s a high probability of accessing nearby words, why not fetch a larger
block of words on a cache miss, trading the increased cost of the miss against the increased probability
of future hits.

Compare the 16-word DM cache shown here with a block size of 4 with a different 16-word DM cache
with a block size of 1. In this cache for every 128 bits of data there are 27 bits of tags and valid bit, so
~17% of the SRAM bits are overhead in the sense that they’re not being used to store data. In the cache
with block size 1, for every 32 bits of data there are 27 bits of tag and valid bit, so ~46% of the SRAM
bits are overhead. So a larger block size means we’ll be using the SRAM more efficiently.

Since there are 16 bytes of data in each cache line, there are now 4 offset bits. The cache uses the
high-order two bits of the offset to select which of the 4 words to return to the CPU on a cache hit.

There are 4 cache lines, so we’ll need two cache line index bits from the incoming address.
And, finally, the remaining 26 address bits are used as the tag field.

Note that there’s only a single valid bit for each cache line, so either the entire 4-word block is present
in the cache or it’s not. Would it be worth the extra complication to support caching partial blocks?

29

Computation Structures - Lecture 14

Probably not. Locality tells us that we’ll probably want those other words in the near future, so having
them in the cache will likely improve the hit ratio.

Block Size Trandeoffs

Block Size Tradeoffs

* Larger block sizes...
— Take advantage of spatial locality

— Incur larger miss penalty since it takes longer to transfer the
block into the cache

— Can increase the average hit time and miss rate
« Average Access Time (AMAT) = HitTime + MissPenalty*MR

Miss Penalty Miss Ratio AMAT

Increased miss penalty
and miss rate

~64 bytes
i
|

Exploits spatial locality

Fewer blocks,
compromises
locality

Block Size Block Size "Block Size

Figure 28.

What'’s the tradeoff between block size and performance? We've argued that increasing the block size
from 1 was a good idea. Is there a limit to how large blocks should be? Let’s look at the costs and
benefits of an increased block size.

With a larger block size we have to fetch more words on a cache miss and the miss penalty grows
linearly with increasing block size. Note that since the access time for the first word from DRAM is quite
high, the increased miss penalty isn’t as painful as it might be.

Increasing the block size past 1 reduces the miss ratio since we’re bringing words into the cache
that will then be cache hits on subsequent accesses. Assuming we don’t increase the overall cache
capacity, increasing the block size means we’ll make a corresponding reduction in the number of
cache lines. Reducing the number of lines impacts the number of separate address blocks that can be
accommodated in the cache. As we saw in the discussion on the size of the working set of a running
program, there are a certain number of separate regions we need to accommodate to achieve a high
hit ratio: program, stack, data, etc. So we need to ensure there are a sufficient number of blocks to
hold the different addresses in the working set. The bottom line is that there is an optimum block size
that minimizes the miss ratio and increasing the block size past that point will be counterproductive.

Combining the information in these two graphs, we can use the formula for AMAT to choose the block
size the gives us the best possible AMAT. In modern processors, a common block size is 64 bytes (16

30

Computation Structures - Lecture 14

words).

Direct-Mapped Cache Problem: Conflict Misses

Direct-Mapped Cache Problem: Conflict Misses

Word Cache Hit/
Address Line index Miss
Loop A: 1024 0 pir | Assume
Pgm at 37 37 HIT 1024-line DM cache
1024, 1025 1 HIT Block size = 1 word
data at 38 38 HIT Consider looping code, in
37: 1026 2 HIT
39 39 HIT steady state
1024 0 HIT Assume WORD, not BYTE,
37 37 HIT addressing
LOPOP = 1024 0 MISS Inflexible mapping (each
I%';:‘ 2048 0 MISS address can only be in one
' 1025 ! MISS cache location) 2 Conflict
data at 2049 | MISS misses!
2048: 1026 2 MISS)
2050 2 MISS
1024] MISS
2048 0 MISS

Figure 29.

DM caches do have an Achilles heel. Consider running the 3-instruction LOOPA code with the instruc-
tions located starting at word address 1024 and the data starting at word address 37 where the program
is making alternating accesses to instruction and data, e.g., a loop of LD instructions.

Assuming a 1024-line DM cache with a block size of 1, the steady state hit ratio will be 100% once all six
locations have been loaded into the cache since each location is mapped to a different cache line.

Now consider the execution of the same program, but this time the data has been relocated to start
at word address 2048. Now the instructions and data are competing for use of the same cache lines.
For example, the first instruction (at address 1024) and the first data word (at address 2048) both map
to cache line 0, so only one them can be in the cache at a time. So fetching the first instruction fills
cache line 0 with the contents of location 1024, but then the first data access misses and then refills
cache line 0 with the contents of location 2048. The data address is said to conflict with the instruction
address. The next time through the loop, the first instruction will no longer be in the cache and its
fetch will cause a cache miss, called a conflict miss. So in the steady state, the cache will never contain
the word requested by the CPU.

Thisis very unfortunate! We were hoping to design a memory system that offered the simple abstraction
of a flat, uniform address space. But in this example we see that simply changing a few addresses
results in the cache hit ratio dropping from 100% to 0%. The programmer will certainly notice her

program running 10 times slower!

31

Computation Structures - Lecture 14

So while we like the simplicity of DM caches, we’ll need to make some architectural changes to avoid
the performance problems caused by conflict misses.

Fully-Associative Cache

Fully-Associative Cache

Opposite extreme: Any address can be in any location
— No cache index!
— Flexible (no conflict misses)

— Expensive: Must compare tags of all entries in parallel to find
matching one (can do this in hardware, this is called a CAM)

Valid
Tag I:i; Data

&) ' Nl I I I !

—>@<U—<] [1 I I []

—>@<—<] [| I I I |

> (C)e—=— 1O 1 I I I]

32-bit BYTE address ¥ ¥ . ¥ ¥
Tag bits Offset bits

Figure 30.

A fully-associative (FA) cache has a tag comparator for each cache line. So the tag field of every cache
line in a FA cache is compared with the tag field of the incoming address. Since all cache lines are
searched, a particular memory location can be held in any cache line, which eliminates the problems
of address conflicts causing conflict misses. The cache shown here can hold 4 different 4-word blocks,
regardless of their address. The example from the end of the previous segment required a cache that
could hold two 3-word blocks, one for the instructions in the loop, and one for the data words. This FA
cache would use two of its cache lines to perform that task and achieve a 100% hit ratio regardless of
the addresses of the instruction and data blocks.

FA caches are very flexible and have high hit ratios for most applications. Their only downside is cost:
the inclusion of a tag comparator for each cache line to implement the parallel search for a tag match
adds substantially the amount of circuitry required when there are many cache lines. Even the use of
hybrid storage/comparison circuitry, called a content-addressable memory, doesn’t make a big dent in
the overall cost of a FA cache.

DM caches searched only a single cache line. FA caches search all cache lines. Is there a happy middle
ground where some small number of cache lines are searched in parallel?

Yes! If you look closely at the diagram of the FA cache shown here, you’ll see it looks like four 1-line
DM caches operating in parallel. What would happen if we designed a cache with four multi-line DM

32

Computation Structures - Lecture 14

caches operating in parallel?

N-way Set-Associative Cache ()

N-way Set-Associative Cache

* Compromise between direct-mapped and fully associative
— Nomenclature:
* # Rows = # Sets Tag Data Tag Data Tag Data Tag Data

+ # Columns = # Ways
« Set size = #ways
= “set associativity”
(e.g., 4-way > 4 entries/set)
— compare all tags from all

: !] i
ways in parallel S) é S S

4 ways

8 sets
L

* An N-way cache can be seen as:
— N direct-mapped caches in parallel

* Direct-mapped and fully-associative are just special cases of N-way
set-associative

Figure 31.

The result would be what we call an 4-way set-associative (SA) cache. An N-way SA cache is really just
N DM caches (let’s call them sub-caches) operating in parallel. Each of the N sub-caches compares
the tag field of the incoming address with the tag field of the cache line selected by the index bits of
the incoming address. The N cache lines searched on a particular request form a search set and the
desired location might be held in any member of the set.

The 4-way SA cache shown here has 8 cache lines in each sub-cache, so each set contains 4 cache lines
(one from each sub-cache) and there are a total of 8 sets (one for each line of the sub-caches).

An N-way SA cache can accommodate up to N blocks whose addresses map to the same cache index.
So access to up to N blocks with conflicting addresses can still be accommodated in this cache without
misses. This a big improvement over a DM cache where an address conflict will cause the current
resident of a cache line to be evicted in favor of the new request.

And an N-way SA cache can have a very large number of cache lines but still only have to pay the cost
of N tag comparators. This is a big improvement over a FA cache where a large number of cache lines
would require a large number of comparators.

So N-way SA caches are a good compromise between a conflict-prone DM cache and the flexible but
very expensive FA cache.

33

Computation Structures - Lecture 14

N-way Set-Associative Cache (Il)

N-way Set-Associative Cache

INCOMING ADDRESS Example: 3-way
[I | | WAY 8-set cache
S~ — "~ —"Tag Darta Tag Data Tag Data

L

(| |) SET

LC:?—-Y L(:é_v =7

Y

MEM DATA P
DATATO CPU ;
HIT — —W\— 0

Figure 32.

Here’s a slightly more detailed diagram, in this case of a 3-way 8-set cache. Note that there’s no
constraint that the number of ways be a power of two since we aren’t using any address bits to select
a particular way. This means the cache designer can fine tune the cache capacity to fit her space
budget.

Just to review the terminology: the N cache lines that will be searched for a particular cache index are
called a set. And each of N sub-caches is called a way.

The hit logic in each way operates in parallel with the logic in other ways. Is it possible for a particular
address to be matched by more than one way? That possibility isn’t ruled out by the hardware, but the
SA cache is managed so that doesn’t happen. Assuming we write the data fetched from DRAM during a
cache miss into a single sub-cache - we’ll talk about how to choose that way in a minute - there’s no
possibility that more than one sub-cache will ever match an incoming address.

34

Computation Structures - Lecture 14

“Let me count the ways.”

“Let me count the ways.”

Elizabeth Barrett Browning

address . . esoe
A o it e, o }
seee . L] * . oe
data o eses o “3e¢
eee o
Potential
} cache line
conflicts
. during
L] L] .
.* o . interval At
L]
L] L]
- -
Ll L] L] . L]
COO‘E‘ .‘ ‘. '. . L] - L]
.' L]
‘ At ‘ time

Figure 33.

How many ways to do we need? We'd like enough ways to avoid the cache line conflicts we experienced
with the DM cache. Looking at the graph we saw earlier of memory accesses vs. time, we see that in
any time interval there are only so many potential address conflicts that we need to worry about.

The mapping from addresses to cache lines is designed to avoid conflicts between neighboring loca-
tions. So we only need to worry about conflicts between the different regions: code, stack and data.
In the examples shown here there are three such regions, maybe 4 if you need two data regions to
support copying from one data region to another. If the time interval is particularly large, we might
need double that number to avoid conflicts between accesses early in the time interval and accesses
late in the time interval.

The point is that a small number of ways should be sufficient to avoid most cache line conflicts in the
cache.

35

Computation Structures - Lecture 14

Associativity Tradeoffs

Associativity Tradeoffs

* More ways...
— Reduce conflict misses
— Increase hit time

AMAT = HitTime + MissRatio x MissPenalty
Miss ratio (%)
14

12 Associativity Hit Time AMAT
10 +l-way Lower conflict misses
. = 2-way
: - i 4-way

6 - 8-way v
4 s . ; « fully assoc
2 M s : Higher hit time
0 ? [H&P: Fig 5.9]

oz s e sk oan 1en Ways Ways

Cache size (bytes) b 4

Little additional benefits
beyond 4 to 8 ways

Figure 34.

As with block size, it’s possible to have too much of a good thing: there’s an optimum number of ways
that minimizes the AMAT. Beyond that point, the additional circuity needed to combine the hit signals

from a large number of ways will start have a significant propagation delay of its own, adding directly
to the cache hit time and the AMAT.

More to the point, the chart on the left shows that there’s little additional impact on the miss ratio
beyond 4 to 8 ways. For most programs, an 8-way set-associative cache with a large number of sets
will perform on a par with the much more-expensive FA cache of equivalent capacity.

36

Computation Structures - Lecture 14

Associativity Implies Choices

Associativity Implies Choices

Issue: Replacement Policy

Direct-mapped N-way set-associative Fully associative
address address address
 I—
N
o0 oo
1
i NN R
« Compare addr with » Compare addr with N * Compare addr with each
only one tag tags simultaneously tag simultaneously
* Location A can be * Location A can be stored
stored in exactly one in exactly one set, but in * Location A can be
cache line any of the N cache lines stored in any cache line

belonging to that set

Figure 35.

There’s one final issue to resolve with SA and FA caches. When there’s a cache miss, which cache line
should be chosen to hold the data that will be fetched from main memory? That’s not an issue with DM
caches, since each data block can only be held in one particular cache line, determined by its address.
But in N-way SA caches, there are N possible cache lines to choose from, one in each of the ways. And
in a FA cache, any of the cache lines can be chosen.

So, how to choose? Our goal is to choose to replace the contents of the cache line which will minimize
the impact on the hit ratio in the future.

37

Computation Structures - Lecture 14

Replacement Policies

Replacement Policies

* Optimal policy (Belady’s MIN): Replace the block that is
accessed furthest in the future

— Requires knowing the future...
* Idea: Predict the future from looking at the past

— If a block has not been used recently, it’s often less likely to be
accessed in the near future (a locality argument)

» Least Recently Used (LRU): Replace the block that was
accessed furthest in the past
— Works well in practice
— Need to keep ordered list of N items — N! orderings
— O(log;N!) = O(N log,N) “LRU bits” + complex logic

— Caches often implement cheaper approximations of LRU
* Other policies:

— First-In, First-Out (least recently replaced)

— Random: Choose a candidate at random

* Not very good, but does not have adversarial access patterns

Figure 36.

The optimal choice is to replace the block that is accessed furthest in the future (or perhaps is never
accessed again). But that requires knowing the future...

Here’s an idea: let’s predict future accesses by looking at recent accesses and applying the principle of
locality. If a block has not been recently accessed, it’s less likely to be accessed in the near future.

That suggests the least-recently-used replacement strategy, usually referred to as LRU: replace the
block that was accessed furthest in the past. LRU works well in practice, but requires us to keep a
list ordered by last use for each set of cache lines, which would need to be updated on each cache
access. When we needed to choose which member of a set to replace, we’d choose the last cache line
on this list. For an 8-way SA cache there are 8! possible orderings, so we’d need log2(8!) = 16 state
bits to encode the current ordering. The logic to update these state bits on each access isn’t cheap;
basically you need a lookup table to map the current 16-bit value to the next 16-bit value. So most
caches implement an approximation to LRU where the update function is much simpler to compute.

There are other possible replacement policies: First-in, first-out, where the oldest cache line is replaced
regardless of when it was last accessed. And Random, where some sort of pseudo-random number
generator is used to select the replacement.

All replacement strategies except for random can be defeated. If you know a cache’s replacement
strategy you can design a program that will have an abysmal hit rate by accessing addresses you know
the cache just replaced. I’'m not sure | care about how well a program designed to get bad performance
runs on my system, but the point is that most replacement strategies will occasionally cause a particular
program to execute much more slowly than expected.

38

Computation Structures - Lecture 14

When all is said and done, an LRU replacement strategy or a close approximation is a reasonable
choice.

Write Policy

Write Policy

Write-through: CPU writes are cached, but also written to
main memory immediately (stalling the CPU until write is
completed). Memory always holds current contents

— Simple, slow, wastes bandwidth

Write-behind: CPU writes are cached; writes to main memory
may be buffered. CPU keeps executing while writes are
completed in the background

— Faster, still uses lots of bandwidth

Write-back: CPU writes are cached, but not written to main
memory until we replace the block. Memory contents can be
“stale”

— Fastest, low bandwidth, more complex

— Commonly implemented in current systems

Figure 37.

Okay, one more cache design decision to make, then we’re done!

How should we handle memory writes in the cache? Ultimately we’ll need update main memory with
the new data, but when should that happen?

The most obvious choice is to perform the write immediately. In other words, whenever the CPU sends
a write request to the cache, the cache then performs the same write to main memory. This is called
write-through. That way main memory always has the most up-to-date value for all locations. But
this can be slow if the CPU has to wait for a DRAM write access - writes could become a real bottleneck!
And what if the program is constantly writing a particular memory location, e.g., updating the value
of a local variable in the current stack frame? In the end we only need to write the last value to main
memory. Writing all the earlier values is waste of memory bandwidth.

Suppose we let the CPU continue execution while the cache waits for the write to main memory to
complete - this is called write-behind. This will overlap execution of the program with the slow writes
to main memory. Of course, if there’s another cache miss while the write is still pending, everything
will have to wait at that point until both the write and subsequent refill read finish, since the CPU can’t
proceed until the cache miss is resolved.

The best strategy is called write-back where the contents of the cache are updated and the CPU
continues execution immediately. The updated cache value is only written to main memory when the

39

Computation Structures - Lecture 14

cache line is chosen as the replacement line for a cache miss. This strategy minimizes the number of
accesses to main memory, preserving the memory bandwidth for other operations. This is the strategy
used by most modern processors.

Write-Back

Write-Back

ON REFERENCE TO Mem[X]: Look for X among tags...
HIT: TAG(X) ==Tag[i] , for some cache block i

*READ: return Datali]
*WRITE: change Data[i]; Stared¥rice-te-MempX]

MISS: TAG(X) not found in tag of any cache block that X can map to
*REPLACEMENT SELECTION:
=Select some line k to hold Mem[X]
=Werite Back: Write Data[k] to Mem[Address from Tag[k]] -

*READ: Read Mem[X]
»Set Tag[k] = TAG(X), Data[k] = Mem[X]

*WRITE:=Seareiri MempP4
»Set Tag[k] = TAG(X), Data[R] = new Mem[X]

Figure 38.

Write-back is easy to implement. Returning to our original cache recipe, we simply eliminate the start
of the write to main memory when there’s a write request to the cache. We just update the cache
contents and leave it at that.

However, replacing a cache line becomes a more complex operation, since we can’t reuse the cache
line without first writing its contents back to main memory in case they had been modified by an earlier
write access.

Hmm. Seems like this does a write-back of all replaced cache lines whether or not they’ve been written
to.

40

Computation Structures - Lecture 14

Write-Back with “Dirty” Bits

Write-Back with “Dirty” Bits

DV TAG DATA
0
Add 1 bit per block to 0
record whether block has CPU (|) TAG(A) | Mem[A] 0
been written to. Only [[0

write back dirty blocks. TAG(B) | Mem[B]

(=]

0

ON REFERENCE TO Mem[X]: Look for TAG(X) among tags...
HIT: TAG(X) == Tag[i] , for some cache block i

*READ: return Datal[i

*WRITE: change Data[i] Start¥rite-te-Ptern(] D[i]=| _
MISS: TAG(X) not found in tag of any cache block that X can map to

*REPLACEMENT SELECTION:
=Select some block k to hold Mem[X]

=If D[k] == | (Writeback) Write Data[k] to Mem[Address of Tag[k]] -

*READ: Read Mem[X]; Set Tag[k] = TAG(. k] = Mem[X], D[k]=0
*WRITE: Start Vrite to Mem Dlk]=I

> Set Tag[k] = TAG(X), Data[k] = new Mem[X]

Figure 39.

We can avoid unnecessary write-backs by adding another state bit to each cache line: the dirty bit.
The dirty bit is set to 0 when a cache line is filled during a cache miss. If a subsequent write operation
changes the data in a cache line, the dirty bit is set to 1, indicating that value in the cache now differs
from the value in main memory.

When a cache line is selected for replacement, we only need to write its data back to main memory if
its dirty bit is 1.

So a write-back strategy with a dirty bit gives an elegant solution that minimizes the number of writes
to main memory and only delays the CPU on a cache miss if a dirty cache line needs to be written back
to memory.

41

Computation Structures - Lecture 14

Summary: Cache Tradeoffs

Summary: Cache Tradeoffs
AMAT = HitTime + MissRatio X MissPenalty

* Larger cache size: Lower miss rate, higher hit time

» Larger block size: Trade off spatial for temporal
locality, higher miss penalty

* More associativity (ways): Lower miss rate, higher
hit time

* More intelligent replacement: Lower miss rate,
higher cost

* Write policy: Lower bandwidth, more complexity

* How to navigate all these dimensions? Simulate
different cache organizations on real programs

Figure 40.

That concludes our discussion of caches, which was motivated by our desire to minimize the average
memory access time by building a hierarchical memory system that had both low latency and high
capacity.

There were a number of strategies we employed to achieve our goal.
Increasing the number of cache lines decreases AMAT by decreasing the miss ratio.

Increasing the block size of the cache let us take advantage of the fast column accesses in a DRAM to
efficiently load a whole block of data on a cache miss. The expectation was that this would improve
AMAT by increasing the number of hits in the future as accesses were made to nearby locations.

Increasing the number of ways in the cache reduced the possibility of cache line conflicts, lowering the
miss ratio.

Choosing the least-recently used cache line for replacement minimized the impact of replacement on
the hit ratio.

And, finally, we chose to handle writes using a write-back strategy with dirty bits.

How do we make the tradeoffs among all these architectural choices? As usual, we’ll simulate differ-
ent cache organizations and chose the architectural mix that provides the best performance on our
benchmark programs.

42

Computation Structures - Lecture 14

Real World Implications

CPU caches

Open tools

Perf® and cachegrind*

Proprietary tools

CPU vendors publish proprietary tools to check the number of cache-hits and misses (°, ¢, ")

DRAM shenanigans

Bitsquatting

The paper®

DRAM persistence

The paper?

Rowhammer

Yet anther paper©!!

8

9

Perf - https://perfwiki.github.io/

Cachegrind - https://valgrind.org/docs/manual/cg-manual.html

Intel® VTune™ Profiler - https://www.intel.com/content/www/us/en/developer/tools/oneapi/vtune-profiler.html
AMD uProf - https://www.amd.com/en/developer/uprof.html

ARM Performance Studio - https://developer.arm.com/Tools%20and%20Software/Arm%20Performance%?20Studio
https://media.blackhat.com/bh-us-11/Dinaburg/BH_US_11_Dinaburg_Bitsquatting_WP.pdf

https://www.usenix.org/legacy/event/sec08/tech/full_papers/halderman/halderman.pdf

10 https://users.ece.cmu.edu/~yoonguk/papers/kim-iscal4.pdf

1 https://googleprojectzero.blogspot.com/2015/03/exploiting-dram-rowhammer-bug-to-gain.html

43

https://perfwiki.github.io/
https://valgrind.org/docs/manual/cg-manual.html
https://www.intel.com/content/www/us/en/developer/tools/oneapi/vtune-profiler.html
https://www.amd.com/en/developer/uprof.html
https://developer.arm.com/Tools%20and%20Software/Arm%20Performance%20Studio
https://media.blackhat.com/bh-us-11/Dinaburg/BH_US_11_Dinaburg_Bitsquatting_WP.pdf
https://www.usenix.org/legacy/event/sec08/tech/full_papers/halderman/halderman.pdf
https://users.ece.cmu.edu/~yoonguk/papers/kim-isca14.pdf
https://googleprojectzero.blogspot.com/2015/03/exploiting-dram-rowhammer-bug-to-gain.html

	Course Contents
	Our Memory Machine
	Memory Technologies
	Static RAM (SRAM)
	SRAM Cell
	SRAM Read
	SRAM Write
	Multiported SRAMs
	Summary: SRAM
	1T Dynamic RAM (DRAM) Cell
	1T DRAM Writes and Reads
	Summary: DRAM
	Non-Volatile Storage: Flash
	Non-Volatile Storage: Hard Disk
	Summary: Memory Technologies
	Memory Hierarchy Interface
	Memory Hierarchy Interface (continued)
	The Locality Principle
	Memory Reference Patterns
	Caches
	A Typical Memory Hierarchy
	Cache Access
	Cache Metrics
	Example: How High of a Hit Ratio?
	Basic Cache Algorithm
	Direct-Mapped Caches
	Example: Direct-Mapped Caches
	Block Size
	Block Size Trandeoffs
	Direct-Mapped Cache Problem: Conflict Misses
	Fully-Associative Cache
	N-way Set-Associative Cache (I)
	N-way Set-Associative Cache (II)
	“Let me count the ways.”
	Associativity Tradeoffs
	Associativity Implies Choices
	Replacement Policies
	Write Policy
	Write-Back
	Write-Back with “Dirty” Bits
	Summary: Cache Tradeoffs

	Real World Implications
	CPU caches
	Open tools
	Proprietary tools

	DRAM shenanigans
	Bitsquatting
	DRAM persistence
	Rowhammer

