Computation Structures - Lecture 12

Procedures and Stacks

Computation Structures - Lecture 12

About

This document is part of the "Computation Structures" course, available at https://PersonalComput
e.net/resources/computation-structures.

The objective of this course is to provide a solid foundation on the inner workings of computers, and
how to use them efficiently. Practically, it tries to answer the question "Why is my computer working
like this?" (where "like this" can mean "slow", "fast", "efficient" or "intermittently freezing").

Its intended audience is first and second-year university students, so its prerequisites are high-school
levels of understanding for math and physics, and a beginner-level understanding of programming. It
is also very useful to anyone whose job involves programming, but hasn’t taken a formal course in
Computer Architectures - a topic that is often overlooked in software or math-oriented degrees.

The Course Contents chapters use the materials from the original course (the MIT OpenCourseWare
release), with very small changes (mostly cosmetic in nature).

Where existing, the Real World Implications chapters provide some additional context and explana-
tions, not present in the MIT OpenCourseWare edition.

If you wish to download the "source code" for the course, go to https://github.com/PersonalCompute-
net/computation-structures/.

Credits

Computation Structures (6.004), Spring 2017 - Original course content, from MIT OpenCourseWare.
Course led by Chris Terman, at MIT.
Originally published at https://ocw.mit.edu/6-004S17 and https://github.com/computation-
structures/course/.
Licensed under Creative Commons BY-NC-SA 4.0 - https://ocw.mit.edu/terms.

Eisvogel - LaTeX template and cover artwork.
Created by Pascal Wagler - https://github.com/Wandmalfarbe/.
Originally published at https://github.com/Wandmalfarbe/pandoc-latex-template/.
Licensed under BSD 3-clause license.

Licensing

This work is licensed under a Creative Commons “Attribution- @@@@
NonCommercial-ShareAlike 4.0 International” license.

URL: https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en

https://PersonalCompute.net/resources/computation-structures
https://PersonalCompute.net/resources/computation-structures
https://github.com/PersonalCompute-net/computation-structures/
https://github.com/PersonalCompute-net/computation-structures/
https://ocw.mit.edu/6-004S17
https://github.com/computation-structures/course/
https://github.com/computation-structures/course/
https://ocw.mit.edu/terms
https://github.com/Wandmalfarbe/
https://github.com/Wandmalfarbe/pandoc-latex-template/
https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en
https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en
https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en

Computation Structures - Lecture 12

Course Contents

Procedures: A Software Abstraction

Procedures: A Software Abstraction

* Procedure: Reusable code int ged(int a, int b) {
int x = a;
fragn‘lent that performs a inty = b;
specific task while (x I= y) {
. . i
— Single named entry point . X()(: ;y_) y{;
— Zero or more formal parameters } else {
y=y-x

— Local storage

— Returns control to the caller ¥

when finished) return x;

» Using multiple procedures bool coprimes(int a, int b) {
. return gcd(a, b) == 1;
enables abstraction and reuse } ged(a, b)

— Compose large programs from

: : i ; // false
collections of simple procedures coprimes(s, 10); // falsc

coprimes(9, 1@); // true

Figure 1.

One of the most useful abstractions provided by high-level languages is the notion of a procedure or
subroutine, which is a sequence of instructions that perform a specific task.

A procedure has a single named entry point, which can be used to refer to the procedure in other parts
of the program. In the example here, this code is defining the GCD procedure, which is declared to
return an integer value.

Procedures have zero or more formal parameters, which are the names the code inside the procedure
will use to refer the values supplied when the procedure is invoked by a “procedure call”. A procedure
callis an expression that has the name of the procedure followed by parenthesized list of values called
“arguments” that will be matched up with the formal parameters. For example, the value of the first
argument will become the value of the first formal parameter while the procedure is executing.

The body of the procedure may define additional variables, called “local variables”, since they can
only be accessed by statements in the procedure body. Conceptually, the storage for local variables
only exists while the procedure is executing. They are allocated when the procedure is invoked and
deallocated when the procedure returns.

The procedure may return a value that’s the result of the procedure’s computation. It’s legal to have
procedures that do not return a value, in which case the procedures would only be executed for their
“side effects”, e.g., changes they make to shared data.

Computation Structures - Lecture 12

Here we see another procedure, COPRIMES, that invokes the GCD procedure to compute the greatest
common divisor of two numbers. To use GCD, the programmer of COPRIMES only needed to know the
input/output behavior of GCD, i.e., the number and types of the arguments and what type of value is
returned as a result. The procedural abstraction has hidden the implementation of GCD, while still
making its functionality available as a “black box”.

This is a very powerful idea: encapsulating a complex computation so that it can be used by others.
Every high-level language comes with a collection of pre-built procedures, called “libraries”, which
can be used to perform arithmetic functions (e.g., square root or cosine), manipulate collections of
data (e.g., lists or dictionaries), read data from files, and so on - the list is nearly endless! Much of
the expressive power and ease-of-use provided by high-level languages comes from their libraries of
“black boxes™.

The procedural abstraction is at the heart of object-oriented languages, which encapsulate data and
procedures as black boxes called objects that support specific operations on their internal data. For
example, a LIST object has procedures (called “methods” in this context) for indexing into the list to
read or change a value, adding new elements to the list, inquiring about the length of the list, and
so on. The internal representation of the data and the algorithms used to implement the methods
are hidden by the object abstraction. Indeed, there may be several different LIST implementations to
choose from depending on which operations you need to be particularly efficient.

Okay, enough about the virtues of the procedural abstraction! Let’s turn our attention to how to
implement procedures using the Beta ISA.

Implementing Procedures

Implementing Procedures

* Option 1: Inlining
— Compiler substitutes procedure call with body

— Problems? . fact(i) €
) int fact(int n
« Code Sl-ZC if (n > @) {
* Recursion return n*fact(n - 1);
} else {
return 1;

}
}
* Option 2: Linking
— Produce separate code for each procedure

— Caller evaluates input arguments, stores them and
transfers control to the callee’s entry point

— Callee runs, stores result, transfers control to caller

Figure 2.

Computation Structures - Lecture 12

A possible implementation is to “inline” the procedure, where we replace the procedure call with a
copy of the statements in the procedure’s body, substituting argument values for references to the
formal parameters. In this approach we’re treating procedures very much like UASM macros, i.e., a
simple notational shorthand for making a copy of the procedure’s body.

Are there any problems with this approach? One obvious issue is the potential increase in the code
size. For example, if we had a lengthy procedure that was called many times, the final expanded code
would be huge! Enough so that inlining isn’t a practical solution except in the case of short procedures
where optimizing compilers do sometimes decide to inline the code.

Abigger difficulty is apparent when we consider a recursive procedure where there’s a nested call to
the procedure itself. During execution the recursion will terminate for some values of the arguments
and the recursive procedure will eventually return an answer. But at compile time, the inlining process
would not terminate and so the inlining scheme fails if the language allows recursion.

The second option is to “link” to the procedure. In this approach there is a single copy of the procedure
code which we arrange to be run for each procedure call - all the procedure calls are said to link to the
procedure code.

Here the body of the procedure is translated once into Beta instructions and the first instruction is
identified as the procedure’s entry point. The procedure call is compiled into a set of instructions that
evaluate the argument expressions and save the values in an agreed-upon location. Then we’ll use a BR
instruction to transfer control to the entry point of the procedure. Recall that the BRinstruction not only
changes the PC but saves the address of the instruction following the branch in a specified register. This
saved address is the “return address” where we want execution to resume when procedure execution
is complete.

After branching to the entry point, the procedure code runs, stores the result in an agreed-upon location
and then resumes execution of the calling program by jumping to the supplied return address.

Computation Structures - Lecture 12

Procedure Calling Convention

Procedure Calling Convention

int fact(int n) {

. fact(3) = 3*fact(2)
if (n>0) { fact(2) = 2*fact(1)
return n*fact(n - 1); fact(1) = 1*fact(e)
}oelse { fact(0) = 1
return 1;
¥
}
fact(3);

* Need calling convention: Uniform way to transfer
data and control between procedures

« Proposed convention:
— Pass argument (value of n) in R1
— Pass return address in R28
* use BR(fact,r28) to call and JMP(r28) to return
— Return result in RO

Figure 3.

To complete this implementation plan we need a “calling convention” that specifies where to store
the argument values during procedure calls and where the procedure should store the return value.
It’s tempting to simply allocate specific memory locations for the job: how about using registers? We
could pass the argument value in registers starting, say, with R1. The return address could be stored
in another register, say R28. As we can see, with this convention the BR and JMP instructions are just
what we need to implement procedure call and return. It’s usual to call the register holding the return
address the “linkage pointer”. And finally the procedure can use, say, RO to hold the return value.

Let’s see how this would work when executing the procedure call fact(3). As shown on the right,
fact(3) requires a recursive call to compute fact(2), and so on. Our goal is to have a uniform
calling convention where all procedure calls and procedure bodies use the same convention for storing
arguments, return addresses and return values. In particular, we’ll use the same convention when
compiling the recursive call fact(n-1) as we did for the initial call to fact (3).

Computation Structures - Lecture 12

Procedure Linkage: First Try

Procedure Calling Convention

int fact(int n) {

. fact(3) = 3*fact(2)
if (n>0) { fact(2) = 2*fact(1)
return n*fact(n - 1); fact(1) = 1*fact(e)
}oelse { fact(0) = 1
return 1;
¥
}
fact(3);

* Need calling convention: Uniform way to transfer
data and control between procedures

« Proposed convention:
— Pass argument (value of n) in R1
— Pass return address in R28
* use BR(fact,r28) to call and JMP(r28) to return
— Return result in RO

Figure 4.

Okay. In the code shown on the right we’ve used our proposed convention when compiling the Beta
code for fact (). Let’s take a quick tour.

To compile the initial call fact(3) the compiler generated a CMOVE instruction to put the argument
value in R1 and then a BRinstruction to transfer control to fact’s entry point while remembering the
return address in R28.

The first statement in the body of fact tests the value of the argument using CMPLEC and BT instruc-
tions.

When n is greater than 0, the code performs a recursive call to fact, saving the value of the recursive
argumentn — 1in R1 as our convention requires. Note that we had to first save the value of the original
argument n because we’ll need it for the multiplication after the recursive call returns its value in RO.

If nis not greater than 0, the value 1 is placed in RO. Then the two possible execution paths merge, each
having generated the appropriate return value in RO, and finally there’s a JMP to return control to the
caller. The JMP instruction knows to find the return address in R28, just where the BR put it as part of
the original procedure call.

Some of you may have noticed that there are some difficulties with this particularimplementation. The
code is correct in the sense that it faithfully implements procedure call and return using our proposed
convention. The problem is that during recursive calls we’ll be overwriting register values we need
later.

For example, note that following our calling convention, the recursive call also uses R28 to store the

Computation Structures - Lecture 12

return address. When executed, the code for the original call stored the address of the HALT instruction
in R28. Inside the procedure, the recursive call will store the address of the MUL instruction in R28.
Unfortunately that overwrites the original return address.

Even the attempt to save the value of the argument N in R2 is doomed to fail since during the execution
of the recursive call R2 will be overwritten.

The crux of the problem is that each recursive call needs to remember the value of its argument and
return address, i.e., we need two storage locations for each active call to fact (). And while executing
fact (3), when we finally get to calling fact(®) there are four nested active calls, so we’ll need 4*2
= 8 storage locations. In fact, the amount of storage needed varies with the depth of the recursion.
Obviously we can’t use just two registers (R2 and R28) to hold all the values we need to save.

Onefixisto disallow recursion! And, in fact, some of the early programming languages such as FORTRAN
did just that. But let’s see if we can solve the problem another way.

Procedure Storage Needs

Procedure Storage Needs

* Basic requirements for procedure calls:
— Input arguments
— Return address
— Results

* Local storage:
— Variables that compiler can’t fit in registers

— Space to save caller’s register values for registers that we
overwrite

Each of these is specific to a particular activation of a
procedure. We call them the procedure’s activation
record

Figure 5.

The problem we need to solve is where to store the values needed by procedure: its arguments, its
return address, its return value. The procedure may also need storage for its local variables and space
to save the values of the caller’s registers before they get overwritten by the procedure. We’d like to
avoid any limitations on the number of arguments, the number of local variables, etc.

So we’ll need a block of storage for each active procedure call, what we’ll call the “activation record”.
As we saw in the factorial example, we can’t statically allocate a single block of storage for a particular

Computation Structures - Lecture 12

procedure since recursive calls mean we’ll have many active calls to that procedure at points during
the execution.

What we need is a way to dynamically allocate storage for an activation record when the procedure is
called, which can then be reclaimed when the procedure returns.

Activation Records

Activation Records

int fact(int n) {
if (n > @) return n*fact(n - 1);
else return 1;

}

TIME

(fact@) | [face@) | [fet@) | [fct@®) | [6c@) | [fac@) |[@c@) |
fact(2) fact(2) fact(2) fact(2) fict(Z)
fact(l) fact(l) fact(l)

fact(0)

| I S —

A procedure call creates a new Return to previous activation record
activation record. Caller’s record when procedure finishes, permanently
is preserved because we’'ll need it discarding activation record created by
when callee finally returns. call we are returning from.

Figure 6.

Let’s see how activation records come and go as execution proceeds.

The first activation record is for the call fact (3). It’s created at the beginning of the procedure and
holds, among other things, the value of the argument n and the return address where execution should
resume after the fact (3) computation is complete.

During the execution of fact(3), we need to make a recursive call to compute fact(2). So that
procedure call also gets an activation record with the appropriate values for the argument and return
address. Note that the original activation record is kept since it contains information needed to
complete the computation of fact(3) after the call to fact (2) returns. So now we have two active
procedure calls and hence two activation records.

fact (2) requires computing fact (1), which, in turn, requires computing fact (®). At this point there
are four active procedure calls and hence four activation records.

The recursion terminates with fact(8), which returns the value 1 to its caller. At this point we’ve
finished execution of fact (®) and so its activation record is no longer needed and can be discarded.

Computation Structures - Lecture 12

fact (1) now finishes its computation returning 1 to its caller. We no longer need its activation record.
Then fact (2) completes, returning 2 to its caller and its activation can be discarded. And so on...

Note that the activation record of a nested procedure call is always discarded before the activation
record of the caller. That makes sense: the execution of the caller can’t complete until the nested
procedure call returns. What we need is a storage scheme that efficiently supports the allocation and
deallocation of activation records as shown here.

Insight: We Need a Stack!

Insight (ca. 1960): We Need a Stack!

¢« Need data structure to hold activation records

« Activation records are allocated and
deallocated in last-in-first-out (LIFO) order

fact(3)

- Stack: push, pop, access to top element |fact(2)
fact(l)

fact(0)

* For C, we only need to access to the activation
record of the currently executing procedure

Figure 7.

Early compiler writers recognized that activation records are allocated and deallocated in last-in first-
out (LIFO) order. So they invented the “stack” a data structure that implements a PUSH operation to
add a record to the top of the stack and a POP operation to remove the top element. New activation
records are PUSHed onto the stack during procedure calls and the POPed from the stack when the
procedure call returns. Note that stack operations affect the top (i.e., most recent) record on the

stack.

C procedures only need to access the top activation record on the stack. Other programming languages,
e.g. Java, support accesses to other active activation records. The stack supports both modes of

operation.

One final technical note: some programming languages support closures (e.g., Javascript) or continua-
tions (e.g., Python’s yield statement), where the activation records need to be preserved even after the
procedure returns. In these cases, the simple LIFO behavior of the stack is no longer sufficient and

Computation Structures - Lecture 12

we’ll need another scheme for allocating and deallocating activation records. But that’s a topic for
another course!

Stack Implementation

Stack Implementation
CONVENTIONS:

* Dedicate a register for the Stack
Pointer (SP = R29).

¢ Builds up (towards higher
addresses) on PUSH stacked data

» SP points to first UNUSED stacked data
location; locations with stacked data
addresses lower than SP have Reg[SP]=—>| unused location
been previously allocated.

LOWER ADDRESSES
/—\//

stacked data

» Discipline: can use stack at any unused | W
time; but leave it as you found it! space
* Reserve a large block of memory — PUSH
well away from our program
and its data HIGHER ADDRESSES
We use only software conventions to
implement our stack (many Other possible implementations
architectures dedicate hardware) include stacks that grow “down”, SP

points to top of stack, etc.

Figure 8.

Here’s how we’ll implement the stack on the Beta:

We’ll dedicate one of the Beta registers, R29, to be the “stack pointer” that will be used to manage
stack operations.

When we PUSH a word onto the stack, we’ll increment the stack pointer. So the stack grows to succes-
sively higher addresses as words are PUSHed onto the stack.

We’ll adopt the convention that SP points to (i.e., its value is the address of) the first unused stack
location, the location that will be filled by next PUSH. So locations with addresses lower than the value
in SP correspond to words that have been previously allocated.

Words can be PUSHed to or POPed from the stack at any point in execution, but we’ll impose the rule
that code sequences that PUSH words onto the stack must POP those words at the end of execution.
So when a code sequence finishes execution, SP will have the same value as it had before the sequence
started. This is called the “stack discipline” and ensures that intervening uses of the stack don’t affect
later stack references.

We’ll allocate a large region of memory to hold the stack located so that the stack can grow without
overwriting other program storage. Most systems require that you specify a maximum stack size when

10

Computation Structures - Lecture 12

running a program and will signal an execution error if the program attempts to PUSH too many items
onto the stack.

For our Beta stack implementation, we’ll use existing instructions to implement stack operations, so
for us the stack is strictly a set of software conventions. Other ISAs provide instructions specifically for
stack operations.

There are many other sensible stack conventions, so you’ll need to read up on the conventions adopted
by the particular ISA or programming language you’ll be using.

Stack Management Macros

Stack Management Macros

PUSH (RX): Push Reg|x] onto stack

Reg[SP] € Reg[SP] + 4;
Mem[Reg[SP]-4] € Reg[x]

POP (RX) : Pop value on top of the stack into Reg[x]
Reg[x] < Mem[Reg[SP]-4] []

Reg[SP] €« Reg[SP] - 4;

ALLOCATE (k) : Reserve k WORDS of stack
Reg[SP] &« Reg[SP] + 4%k []

DEALLOCATE (k) : Release k WORDS of stack
Reg[SP] €« Reg[SP] - 4%k []

Figure 9.

We’ve added some convenience macros to UASM to support stacks.

The PUSH macro expands into two instructions. The ADDC increments the stack pointer, allocating a
new word at the top of stack, and then initializes the new top-of-stack from a specified register value
with a ST instruction.

The POP macro LDs the value at the top of the stack into the specified register, then uses a SUBC
instruction to decrement the stack pointer, deallocating that word from the stack.

Note that the order of the instructions in the PUSH and POP macro is very important. As we’ll see
in the next lecture, interrupts can cause the Beta hardware to stop executing the current program
between any two instructions, so we have to be careful about the order of operations. So for PUSH, we
first allocate the word on the stack, then initialize it. If we did it the other way around and execution
was interrupted between the initialization and allocation, code run during the interrupt which uses

11

Computation Structures - Lecture 12

the stack might unintentionally overwrite the initialized value. But, assuming all code follows stack
discipline, allocation followed by initialization is always safe.

The same reasoning applies to the order of the POP instructions. We first access the top-of-stack one
last time to retrieve its value, then we deallocate that location.

We can use the ALLOCATE macro to reserve a number of stack locations for later use. Sort of like PUSH
but without the initialization.

DEALLOCATE performs the opposite operation, removing N words from the stack.

In general, if we see a PUSH or ALLOCATE in an assembly language program, we should be able to find
the corresponding POP or DEALLOCATE, which would indicate that stack discipline is maintained.

Fun With Stacks

Fun with Stacks

We can use stacks to save values we’ll need later.
For instance, the following code fragment can be
inserted anywhere within a program.

// Argh!ll I'm out of registers Scotty!!
//
PUSH(R®@) // Frees up RO
PUSH(R1) // Frees up R1
LD(dilithum_xtals, Re@)
LD(seconds_til_explosion, R1)

suspense: SUBC(R1, 1, R1) .
BNE(R1, suspense) is pushed on
ST(R®, warp_engines)
POP(R1) // Restores R1
POP(R@) // Restores RO

Data is popped off the stack
in the opposite order that it

Next, we’ll use show how to use stacks for
activation records..

Figure 10.

We’ll use stacks to save values we’ll need later. For example, if we need to use some registers for a
computation but don’t know if the register’s current values are needed later in the program, we can
PUSH their current values onto the stack and then are free to use the registers in our code. After we’re
done, we can use POP to restore the saved values.

Note that we POP data off the stack in the opposite order that the data was PUSHed, i.e., we need to
follow the last-in first-out discipline imposed by the stack operations.

Now that we have the stack data structure, we’ll use it to solve our problems with allocating and
deallocating activation records during procedure calls.

12

Computation Structures - Lecture 12

Solving Procedure Linkage Problems

Solving Procedure Linkage Problems

Reminder: Procedure storage needs
1) We need a way to pass arguments to the procedure
2) Procedures need their own LOCAL storage

3) Procedures need to call other procedures; special case:
recursive procedures that call themselves

Plan for caller: C code:

* Push argument values proc(expry, .., expr,)

onto stack in reverse Beta assembly:

order for use by callee .
compile_expr(expr,)=Rx
* Branch to callee, save PUSH(rx)
return address in

dedicated register (LP = compile_expr(expr)=Rx

2
R28) PUSH(rx)
* Clean up stack after BR(proc,LP)
callee return DEALLOCATE (n)

Figure 11.

We’ll use the stack to hold a procedure’s activation record. That includes the values of the arguments to
the procedure call. We’ll allocate words on the stack to hold the values of the procedure’s local variables,
assuming we don’t keep them in registers. And we’ll use the stack to save the return address (passed
in LP) so the procedure can make nested procedure calls without overwriting its return address.

The responsibility for allocating and deallocating the activation record will be shared between the
calling procedure (the “caller”) and the called procedure (the “callee”).

The caller is responsible for evaluating the argument expressions and saving their values in the activa-
tion record being built on the stack. We’ll adopt the convention that argument values are pushed in
reverse order, i.e., the first argument will be the last to be pushed on the stack. We’ll explain why we
made this choice in a couple of slides...

The code compiled for a procedure involves a sequence of expression evaluations, each followed by a
PUSH to save the calculated value on the stack. So when the callee starts execution, the top of the
stack contains the value of the first argument, the next word down the value of the second argument,
and so on.

After the argument values, if any, have been pushed on the stack, there’s a BR to transfer control to the
procedure’s entry point, saving the address of the instruction following the BR in the linkage pointer,
R28, a register that we’ll dedicate to that task.

When the callee returns and execution resumes in the caller, a DEALLOCATE is used to remove all the
argument values from the stack, preserving stack discipline.

13

Computation Structures - Lecture 12

So that’s the code the compiler generates for the procedure. The rest of the work happens in the called
procedure.

Stack Frames as Activation Records

Stack Frames as Activation Records

/‘_/
CALLEE uses stack for all of the

its storage needs: - args caller

1. Saving return address back to pushes

the caller (it’s in LP) Saved LP

2. Saving BP of caller (pointer to Saved(Br
BP—

callee

. . hi
caller’s activation record) = Lowmlvars — s
3. Allocating stack locations to Saved regs
hold local variables SP—
. —— unused —|
4. Save any registers callee uses: space
“callee saves” convention
N
Dedicate another register (BP = BEISEIce renience
R27) to hold address of the In theory it’s possible to use SP to access
activation record. Use when stack frame, but offsets will change due to
accessing PUSHSs and POPs. For convenience we use
« Arguments BP so we can use constant offsets to find,
« Other local storage e.g., the first argument.

Figure 12.

The code at the start of the called procedure completes the allocation of the activation record. Since
when we’re done the activation record will occupy a bunch of consecutive words on the stack, we’ll
sometimes refer to the activation record as a “stack frame” to remind us of where it lives.

The first action is to save the return address found in the LP register. This frees up LP to be used by any
nested procedure calls in the body of the callee.

In order to make it easy to access values stored in the activation record, we’ll dedicate another register
called the “base pointer” (BP = R27) which will point to the stack frame we’re building. So as we enter
the procedure, the code saves the pointer to the caller’s stack frame, and then uses the current value
of the stack pointer to make BP point to the current stack frame. We’ll see how we use BP in just a
moment.

Now the code will allocate words in the stack frame to hold the values for the callee’s local variables, if
any.

Finally, the callee needs to save the values of any registers it will use when executing the rest of its
code. These saved values can be used to restore the register values just before returning to the caller.
This is called the “callee saves” convention where the callee guarantees that all register values will be
preserved across the procedure call. With this convention, the code in the caller can assume any values
it placed in registers before a nested procedure call will still be there when the nested call returns.

14

Computation Structures - Lecture 12

Note that dedicating a register as the base pointer isn’t strictly necessary. All accesses to the values on
the stack can be made relative to the stack pointer, but the offsets from SP will change as values are
PUSHed and POPed from the stack, e.g., during procedure calls. It will be easier to understand the
generated code if we use BP for all stack frame references.

Stack Frame Details

Stack Frame Details

CALLER passes arguments
to CALLEE on the stack in
reverse order

F(1,2,3,4) translates to:
CMOVE (4,R8)
PUSH(R®)

CMOVE (3,R0)
PUSH(R®)
CMOVE (2,R0)
PUSH(R®)
CMOVE(1,R0)
PUSH(R®)
BR(F, LP)

Why push args in REVERSE order?

Figure 13.

Let’s return to the question about the order of argument values in the stack frame. We adopted the
convention of PUSHing the values in reverse order, i.e., where the value of the first argument is the last

one to be PUSHED.

So, why PUSH argument values in reverse order?

BP—

SP—>

/\//

Saved LP

Saved BP

Callers Local 0

CALLER’S
FRAME

arg n-|

arg 0
Saved LP
Saved BP

local 0

local |

[temps — |

CALLEE'S
FRAME

—— unused —

/-\’//

15

Computation Structures - Lecture 12

Argument Order & BP Usage

Argument Order & BP Usage

Why push args in reverse order? It il
allows the BP to serve double duties
when accessing the local frame arg -1
1) To access j™ argument (j = 0): a-;g-j «— Reg[BP]
LD(BP, -4*(j+3), rx) — 4%(j+3)
or . arg 0 «~— Reg[BP] - 12
ST(rx, -4*(3+3), BP) Saved LP | Reg[BP] -8
CALLEE can access the first few Saved BP «— Reg[BP] -4
arguments without knowing how BP— local 0
many arguments have been passed! e
local k “— Reg[BP] + 4%k
2) To access k" local variable (k = 0) — temps —
LD(BP, k*4, rx) SP—s
or +—— unused —
ST(rx, k*4, BP)
N

Figure 14,

With the arguments PUSHed in reverse order, the first argument (labeled “arg 0”) will be at a fixed offset
from the base pointer regardless of the number of argument values pushed on the stack. The compiler
can use a simple formula to the determine the correct BP offset value for any particular argument. So
the first argument is at offset -12, the second at -16, and so on.

Why is this important? Some languages, such as C, support procedure calls with a variable number of
arguments. Usually the procedure can determine from, say, the first argument, how many additional
arguments to expect. The canonical example is the C printf function where the first argument is a
format string that specifies how a sequence of values should be printed. So a call to printf includes the
format string argument plus a varying number of additional arguments. With our calling convention
the format string will always be in the same location relative to BP, so the printf code can find it without
knowing the number of additional arguments in the current call.

The local variables are also at fixed offsets from BP. The first local variable is at offset 0, the second at
offset 4, and so on.

So we see that having a base pointer makes it easy to access the values of the arguments and local
variables using fixed offsets that can be determined at compile time. The stack above the local variables
is available for other uses, e.g., building the activation record for a nested procedure call!

16

Computation Structures - Lecture 12

Procedure Linkage: The Contract

Procedure Linkage: The Contract

@ D

The CALLER will:

* Push args onto stack, in reverse order.
* Branch to callee, putting return address into LP.

* Remove args from stack on return.

The CALLEE will:
» Perform promised computation, leaving result in RO.
* Branch to return address.

*» Leave stacked data intact, including stacked args.

* Leave regs (except R0) unchanged.

Figure 15.

Okay, here’s our final contract for how procedure calls will work:

+ The calling procedure (“caller”) will:

- PUSH the argument values onto the stack in reverse order.
- Branch to the entry point of the callee, putting the return address into the linkage pointer.
- When the callee returns, remove the argument values from the stack.

 The called procedure (“callee”) will:

- Perform the promised computation, leaving the result in RO.

- Jump to the return address when the computation has finished.

- Remove any items it has placed on the stack, leaving the stack as it was when the procedure
was entered. Note that the arguments were PUSHed on the stack by the caller, so it will be
up to the caller to remove them.

- Preserve the values in all registers except RO, which holds the return value. So the caller can
assume any values placed in registers before a nested call will be there when the nested
call returns.

17

Computation Structures - Lecture 12

Procedure Linkage Templates

Procedure Linkage Templates

PUSH(arg,) // push args, last arg first

PUSH(arg;)

BR(f, LP) // call f.

DEALLOCATE(n) // Clean up!

// (f's return value in r@)
e — S ol U [D) // Save LP and BP

PUSH(BP) // in case we make new calls.

MOVE (SP,BP) // set BP=frame base

ALLOCATE(nlocals) // allocate locals

(push other regs) // preserve any regs used

// return value in Re..

(pop other regs) // restore regs

MOVE (BP,SP) Why no // strip locals, etc
POP(BP) // restore CALLER’s linkage
POP(LP) DEALLOCATE? // (the return address)

JMP(LP) // return.

Figure 16.

We saw the code template for procedure calls on an earlier slide.

Here’s the template for the entry point to a procedure F. The code saves the caller’s LP and BP values,
initializes BP for the current stack frame and allocates words on the stack to hold any local variable
values. Thefinal step isto PUSH the value of any registers (besides R0) that will be used by the remainder
of the procedure’s code.

The template for the exit sequence mirrors the actions of the entry sequence, restoring all the values
saved by the entry sequence, performing the POP operations in the reverse of the order of the PUSH
operations in the entry sequence. Note that in moving the BP value into SP we’ve reset the stack to
its state at the point of the MOVE(SP, BP) in the entry sequence. This implicitly undoes the effect of
the ALLOCATE statement in the entry sequence, so we don’t need a matching DEALLOCATE in the exit
sequence.

The last instruction in the exit sequence transfers control back to the calling procedure.

With practice you’ll become familiar with these code templates. Meanwhile, you can refer back to this
slide whenever you need to generate code for a procedure call.

18

Computation Structures - Lecture 12

Putting It All Together: Factorial

Putting It All Together: Factorial

fact: PUSH(LP) // save linkages
PUSH(BP)
MOVE (SP,BP) // new frame base
. . PUSH(r1) // preserve regs
int fact(int n) { io,r /7 1€ n
if (n>0) { CMPLEC(r1,0,r8) // if (n > @)
return n*fact(n-1); BT(ro,else)
I else { SUBC(r1,1,r1) // rl € (n-1)
return 1; PUSH(r1 // push argl
} BR(fact,LP) // fact(n-1)
} DEALLOCATE(1) | // pop argl
LD(BP,-12,r1) // rl € n
MUL(rl1,re,ro) // ré € n*fact(n-1)
BR(rtn)
else: CMOVE(1,re@) // return 1
rtn: POP(r1) // restore regs
MOVE (BP, SP) // Why?
POP (BP) // restore links
POP(LP)
JIMP(LP) // return

Figure 17.

Here’s the code our compiler would generate for the C implementation of factorial shown on the left.

The entry sequence saves the caller’s LP and BP, then initializes BP for the current stack frame. The
value of R1 is saved so we can use R1 in code that follows.

The exit sequence restores all the saved values, including that for R1. The code for the body of the
procedure has arranged for RO to contain the return value by the time execution reaches the exit
sequence.

The nested procedure call passes the argument value on the stack and removes it after the nested call
returns.

The remainder of the code is generated using the templates we saw in the previous lecture. Aside from
computing and pushing the values of the arguments, there are approximately 10 instructions needed
to implement the linking approach to a procedure call. That’s not much for a procedure of any size,
but might be significant for a trivial procedure. As mentioned earlier, some optimizing compilers can
make the tradeoff of inlining small non-recursive procedures saving this small amount of overhead.

19

Computation Structures - Lecture 12

Recursion?

Recursion?
I

Of course! 3

Saved LP

* Frames allocated for each Saved BP
recursive call...

fact(3)

Saved R
2
Saved LP fact(2)
Saved BP
Saved R |
|
Saved LP face(1)
Saved BP
Saved R|
0
Saved LP
Saved BP
Saved R|

* Deallocated (in inverse order)
as recursive calls return

Debugging skill:
“stack crawling”

* Given code, stack snapshot —
figure out what, where, how,

who...
« Follow old <BP> links to parse
frames

Ve Van

* Decode args, locals, return fact(0)

locations, etc etc etc BP.

SP—>
Particularly useful on 6.004 quizzes! L

Figure 18.

So have we solved the activation record storage issue for recursive procedures?

Yes! A new stack frame is allocated for each procedure call. In each frame we see the storage for the
argument and return address. And as the nested calls return the stack frames will be deallocated in
inverse order.

Interestingly we can learn a lot about the current state of execution by looking at the active stack
frames. The current value of BP, along with the older values saved in the activation records, allow us to
identify the active procedure calls and determine their arguments, the values of any local variables for
active calls, and so on. If we print out all this information at any given time we would have a “stack
trace” showing the progress of the computation. In fact, when a problem occurs, many language
runtimes will print out the stack trace to help the programmer determine what happened.

And, of course, if you can interpret the information in the stack frames, you can show you understand
our conventions for procedure call and return. Don’t be surprised to find such a question on a quiz:)

20

Computation Structures - Lecture 12

Stack Detective
Stack Detective main pgm
. . //_\-_/
fact(n) is called. During the /
calculation, the computer is stopped s/
with the PC at 0x40; the stack ?3 fact(6)
contents are shown (in hex). m
= What’s the argument to the active 5
call to fact? 3 40 P fact
= What’s the argument to the [10C fact(5)
original call to fact? © 5
= What’s the location of the original 4
calling (BR) instruction? 80 — 4 = 7C 40
1nc fact(4)
= What instruction is about to be 12c 4
executed? DEALLOCATE(1) 130 3 P
= What value is in BP? 13C 134 40 Saved LP
* What value is in SP? 13C+4+4=144 138 12C Saved BP
BP— |13C 3
* What value is in RO? fact(2) = 2 R saved R

SP—

Figure 19.

Let’s practice our newfound skill and see what we can determine about a running program which we’ve
stopped somewhere in the middle of its execution. We’re told that a computation of fact() is in progress
and that the PC of the next instruction to be executed is 0x40. We’re also given the stack dump shown
on right.

Since we're in the middle of a fact computation, we know that current stack frame (and possibly others)
is an activation record for the fact function. Using the code on the previous slide we can determine the
layout of the stack frame and generate the annotations shown on the right of the stack dump. With the
annotations, it’s easy to see that the argument to current active call is the value 3.

Now we want to know the argument to original call to fact. We’ll have to label the other stack frames
using the saved BP values. Looking at the saved LP values for each frame (always found at an offset
of -8 from the frame’s BP), we see that many of the saved values are 0x40, which must be the return
address for the recursive fact calls.

Looking through the stack frames we find the first return address that’s not 0x40, which must an return
address to code that’s not part of the fact procedure. This means we’ve found the stack frame created
by the original call to fact and can see that argument to the original call is 6.

What’s the location of the BR that made the original call? Well the saved LP in the stack frame of the
original call to fact is 0x80. That’s the address of the instruction following the original call, so the BR
that made the original call is one instruction earlier, at location 0x7C. To answer these questions you
have to be good at hex arithmetic!

21

Computation Structures - Lecture 12

What instruction is about to be executed? We were told its address is x40, which we notice is the
saved LP value for all the recursive fact calls. So 0x40 must be the address of the instruction following
the BR(fact,LP) instruction in the fact code. Looking back a few slides at the fact code, we see that’s
a DEALLOCATE(1) instruction.

What value is in BP? Hmm. We know BP is the address of the stack location containing the saved R1
value in the current stack frame. So the saved BP value in the current stack frame is the address of the
saved R1 value in the previous stack frame. So the saved BP value gives us the address of a particular
stack location, from which we can derive the address of all the other locations! Counting forward, we
find that the value in BP must be 0x13C.

What value is in SP? Since we’re about to execute the DEALLOCATE to remove the argument of the
nested call from the stack, that argument must still be on the stack right after the saved R1 value. Since
the SP points to first unused stack location, it points to the location after that word, so it has the value
0x144.

Finally, what value is is R0? Since we’ve just returned from a call to fact(2) the value in RO must the
result from that recursive call, which is 2.

Wow! You can learn a lot from the stacked activation records and a little deduction! Since the state of
the computation is represented by the values of the PC, the registers, and main memory, once we’re
given that information we can tell exactly what the program has been up to. Pretty neat...

Summary of Dedicated Registers

Summary of Dedicated Registers

The Beta ISA has 32 registers. But we've dedicated
several of them to serve a specific purpose:

* R31 is always zero [ISA]

= R3O0 ... reserved for future use... [next lecture]
*« R29 = SP, stack pointer [software convention]

« R28 = LP, linkage pointer [software convention]|

« R27 = BP, base pointer [software convention]

Figure 20.

22

Computation Structures - Lecture 12

Wrapping up, we’ve been dedicating some registers to help with our various software conventions. To
summarize:

R31is always zero, as defined by the ISA.

We’ll also dedicate R30 to a particular function in the ISA when we discuss the implementation of the
Beta in the next lecture. Meanwhile, don’t use R30 in your code!

The remaining dedicated registers are connected with our software conventions:

« R29 (SP) is used as the stack pointer,
+ R28 (LP) is used as the linkage pointer, and
« R27 (BP) is used as the base pointer.

As you practice reading and writing code, you’ll grow familiar with these dedicated registers.

Summary

Summary

« Each procedure invocation has an activation record
— Created during procedure call/entry sequence
— Discarded when procedure returns
— Holds:
« Argument values (in reverse order)
« Saved LP, BP from caller (callee reuses those regs)
« Storage for local variables (if any)
« Other saved regs from caller (callee needs regs to use)
— BP points to activation record of active call
« Access arguments at offsets of -12, -16, -20, ..
« Access local variables at offsets of 0, 4, 8, ...

* “Callee saves” convention: all reg values preserved
« Except for RO, which holds return value

Figure 21.

In thinking about how to implement procedures, we discovered the need for an activation record to
store the information needed by any active procedure call.

An activation record is created by the caller and callee at the start of a procedure call. And the record
can be discarded when the procedure is complete.

The activation records hold argument values, saved LP and BP values along with the caller’s values in
any other of the registers. Storage for the procedure’s local variables is also allocated in the activation
record.

23

Computation Structures - Lecture 12

We use BP to point to the current activation record, giving easy access to the values of the arguments
and local variables.

We adopted a “callee saves” convention where the called procedure is obligated to preserve the values
in all registers except for RO.

Taken together, these conventions allow us to have procedures with arbitrary numbers of arguments
and local variables, with nested and recursive procedure calls. We’re now ready to compile and execute
any C program!

24

	Course Contents
	Procedures: A Software Abstraction
	Implementing Procedures
	Procedure Calling Convention
	Procedure Linkage: First Try
	Procedure Storage Needs
	Activation Records
	Insight: We Need a Stack!
	Stack Implementation
	Stack Management Macros
	Fun With Stacks
	Solving Procedure Linkage Problems
	Stack Frames as Activation Records
	Stack Frame Details
	Argument Order & BP Usage
	Procedure Linkage: The Contract
	Procedure Linkage Templates
	Putting It All Together: Factorial
	Recursion?
	Stack Detective
	Summary of Dedicated Registers
	Summary

