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Course Contents

Beta ISA Summary

Beta ISA Summary

* Storage:
— Processor: 32 registers (r31 hardwired to 0) and PC
— Main memory: Up to 4 GB, 32-bit words, 32-bit byte
addresses, 4-byte-aligned accesses

lopcone| ro | r. | r, | unused |
* Instruction formats:
lopcope| re | ra | 16-bit signed constant |
32 bits

* Instruction classes:
— ALU: Two input registers, or register and constant
— Loads and stores: access memory
— Branches, Jumps: change program counter

Figure 1.

In the previous lecture we developed the instruction set architecture for the Beta, the computer system
we’ll be building throughout this part of the course. The Beta incorporates two types of storage or
memory. In the CPU datapath there are 32 general-purpose registers, which can be read to supply
source operands for the ALU or written with the ALU result. In the CPU’s control logic there is a special-
purpose register called the program counter, which contains the address of the memory location
holding the next instruction to be executed.

The datapath and control logic are connected to a large main memory with a maximum capacity of 232
bytes, organized as 23" 32-bit words. This memory holds both data and instructions.

Beta instructions are 32-bit values comprised of various fields. The 6-bit OPCODE field specifies the
operation to be performed. The 5-bit Ra, Rb, and Rc fields contain register numbers, specifying one of
the 32 general-purpose registers. There are two instruction formats: one specifying an opcode and
three registers, the other specifying an opcode, two registers, and a 16-bit signed constant.

There three classes of instructions. The ALU instructions perform an arithmetic or logic operation on
two operands, producing a result that is stored in the destination register. The operands are either two
values from the general-purpose registers, or one register value and a constant. The yellow highlighting
indicates instructions that use the second instruction format.

The Load/Store instructions access main memory, either loading a value from main memory into a
register, or storing a register value to main memory.
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And, finally, there are branches and jumps whose execution may change the program counter and
hence the address of the next instruction to be executed.

Programming Languages

Programming Languages

32-bit (4-byte) ADD instruction:

1ooooo|oo1oo|ooo1o|ooo11|ooooooooooo

opcode rc ra rb (unused)

Means, to the BETA, Reg[4] < Reg[2] + Reg[3]

We’d rather write in assembly language:
oo (R2, 13, R) =
or better yet a high-level language: I:I

a=>b+c;

Figure 2.

To program the Beta we’ll need to load main memory with binary-encoded instructions. Figuring out
each encoding is clearly the job for a computer, so we’ll create a simple programming language that
will let us specify the opcode and operands for each instruction. So instead of writing the binary at
the top of slide, we’ll write assembly language statements to specify instructions in symbolic form.
Of course we still have think about which registers to use for which values and write sequences of
instructions for more complex operations.

By using a high-level language we can move up one more level abstraction and describe the com-
putation we want in terms of variables and mathematical operations rather than registers and ALU
functions.

In this lecture we’ll describe the assembly language we’ll use for programming the Beta. And in the next
lecture we’ll figure out how to translate high-level languages, such as C, into assembly language.

The layer cake of abstractions gets taller yet: we could write an interpreter for say, Python, in C and then
write our application programs in Python. Nowadays, programmers often choose the programming
language that’s most suitable for expressing their computations, then, after perhaps many layers of
translation, come up with a sequence of instructions that the Beta can actually execute.
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Assembly Language

Assembly Language

Symbolic [ 227270 Siooo1s | Array of bytes
representation |7 77| — — | 00101111 | to be loaded
of stream of bytes |------- 10110001 | jnto memory

Source Binary
text file machine
language

* Abstracts bit-level representation of instructions and
addresses

+ We'll learn UASM (“microassembler”), built into BSim

* Main elements:
— Values
— Symbols
(symbols for addresses)
— Macros

Figure 3.

Okay, back to assembly language, which we’ll use to shield ourselves from the bit-level representations
of instructions and from having to know the exact location of variables and instructions in memory.
A program called the “assembler” reads a text file containing the assembly language program and
produces an array of 32-bit words that can be used to initialize main memory.

We’'ll learn the UASM assembly language, which is built into BSim, our simulator for the Beta ISA. UASM
is really just a fancy calculator! It reads arithmetic expressions and evaluates them to produce 8-bit
values, which it then adds sequentially to the array of bytes which will eventually be loaded into the
Beta’s memory. UASM supports several useful language features that make it easier to write assembly
language programs. Symbols and labels let us give names to particular values and addresses. And
macros let us create shorthand notations for sequences of expressions that, when evaluated, will
generate the binary representations for instructions and data.
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Example UASM Source File

Example UASM Source File

N =12 // loop index initial value

ADDC(r31, N, ri) // rl = loop index

ADDC(r31, 1, re) // r@ = accumulated product
: MUL(re, ri, re) // ré = re * ri

SUBC(ri, 1, ri) /¥ rl =rl1 -1 %/

BNE(r1, , r31) // if r1 != @, NextPC=loop

+ Comments after //, ignored by assembler (also /*...*/)

* Symbols are symbolic representations of a constant
value (they are NOT variables!)

are symbols for addresses

* Macros expand into sequences of bytes
— Most frequently, macros are instructions
— We can use them for other purposes

Figure 4.

Here’s an example UASM source file. Typically we write one UASM statement on each line and can use
spaces, tabs and newlines to make the source as readable as possible. We’ve added some color coding
to help in our explanation.

Comments (shown in green) allow us to add text annotations to the program. Good comments will
help remind you how your program works. You really don’t want to have figure out from scratch what
a section of code does each time you need to modify or debug it! There are two ways to add comments
to the code. “//” starts a comment, which then occupies the rest of the source line. Any characters
after “//” are ignored by the assembler, which will start processing statements again at the start of
the next line in the source file. You can also enclose comment text using the delimiters “/*” and “*/”
and the assembler will ignore everything in-between. Using this second type of comment, you can
“comment-out” many lines of code by placing “/*” at the start and, many lines later, end the comment
section with “*/”.

Symbols (shown in red) are symbolic names for constant values. Symbols make the code easier to
understand, e.g., we can use N as the name for an initial value for some computation, in this case the
value 12. Subsequent statements can refer to this value using the symbol N instead of entering the
value 12 directly. When reading the program, we’ll know that N means this particular initial value. So if
later we want to change the initial value, we only have to change the definition of the symbol N rather
than find all the 12’s in our program and change them. In fact some of the other appearances of 12
might not refer to this initial value and so to be sure we only changed the ones that did, we’d have to
read and understand the whole program to make sure we only edited the right 12’s. You can imagine
how error-prone that might be! So using symbols is a practice you want to follow!
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Note that all the register names are shown in red. We’ll define the symbols RO through R31 to have the
values 0 through 31. Then we’ll use those symbols to help us understand which instruction operands
are intended to be registers, e.g., by writing R1, and which operands are numeric values, e.g., by writing
the number 1. We could just use numbers everywhere, but the code would be much harder to read
and understand.

Alabel (shown in yellow) is a symbol whose value are the address of a particular location in the program.
Here, the label “loop” will be our name for the location of the MUL instruction in memory. In the BNE
at the end of the code, we use the label “loop” to specify the MUL instruction as the branch target. So if
R1 is non-zero, we want to branch back to the MUL instruction and start another iteration.

We’ll use indentation for most UASM statements to make it easy to spot the labels defined by the
program. Indentation isn’t required, it’s just another habit assembly language programmers use to
keep their programs readable.

We use macro invocations (shown in blue) when we want to write Beta instructions. When the assembler
encounters a macro, it “expands” the macro, replacing it with a string of text provided by in the macro’s
definition. During expansion, the provided arguments are textually inserted into the expanded text at
locations specified in the macro definition. Think of a macro as shorthand for a longer text string we
could have typed in. We’ll see how all this works in the next video segment.

How Does It Get Assembled?

How Does It Get Assembled?

Text input * Load predefined symbols
N = 12 into a symbol table
ADDC(r31, N, ri) * Read input line by line

— Add symbols to symbol table
ADDC(r31, 1, re) as they are defined

: MUL(re, rl, re) — Expand macros, translating
SUBC(r1, 1, ri) symbols to values first

BNE(r1, » P31) Symbol table

Binary output
|::> 110000 00001 11111 @EEPOREE ©PEP1160 [Bx08]
110000 00000 11111 ©OEPPEEO ©REREEeLl [Ox04] rl !
100010 02000 PEAED PEEP1 PAPERGPEAED [0x08]

r0 0

r3l 31

N 12
loop 8

Figure 5.

Let’s follow along as the assembler processes our source file. The assembler maintains a symbol table
that maps symbols’ names to their numeric values. Initially the symbol table is loaded with mappings

6
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for all the register symbols.

The assembler reads the source file line-by-line, defining symbols and labels, expanding macros, or
evaluating expressions to generate bytes for the output array. Whenever the assembler encounters a
use of a symbol or label, it’s replaced by the corresponding numeric value found in the symbol table.

The first line, N = 12, defines the value of the symbol N to be 12, so the appropriate entry is made in the
symbol table.

Advancing to the next line, the assembler encounters an invocation of the ADDC macro with the
arguments “r31”, “N”, and “r1”. As we’ll see in a couple of slides, this triggers a series of nested macro
expansions that eventually lead to generating a 32-bit binary value to be placed in memory location 0.
The 32-bit value is formatted here to show the instruction fields and the destination address is shown
in brackets.

The next instruction is processed in the same way, generating a second 32-bit word.

On the fourth line, the label loop is defined to have the value of the location in memory that’s about
to filled (in this case, location 8). So the appropriate entry is made in the symbol table and the MUL
macro is expanded into the 32-bit word to be placed in location 8.

The assembler processes the file line-by-line until it reaches the end of the file. Actually the assembler
makes two passes through the file. On the first pass it loads the symbol table with the values from
all the symbol and label definitions. Then, on the second pass, it generates the binary output. The
two-pass approach allows a statement to refer to symbol or label that is defined later in the file, e.g., a
forward branch instruction could refer to the label for an instruction later in the program.
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Registers Are Predefined Symbols

Registers are Predefined Symbols

«+ r0=0,..,1r31=31
* Treated like

ADDC(r31, N, ril)
normal symbols:

Substitute symbols with their values
ADDC(31, 12, 1)
Expand macro

110000 0001 11111 00000000 00001100

* No “type checking” if you use the wrong opcode...

ADDC(r31, ri2, ril) ADD(r31, N, rl)
ADDC(31, 12, 1) ADD(31, 12, 1)
Reg[1] € Reg[31] + 12 Reg[1] € Reg[31] + Reg[12]

Figure 6.

As we saw in the previous slide, there’s nothing magic about the register symbols - they are just
symbolic names for the values 0 through 31. So when processing ADDC(r31,N,r1), UASM replaces the
symbols with their values and actually expands ADDC(31,12,1).

UASM is very simple. It simply replaces symbols with their values, expands macros and evaluates
expressions. So if you use a register symbol where a numeric value is expected, the value of the symbol
is used as the numeric constant. Probably not what the programmer intended.

Similarly, if you use a symbol or expression where a register number is expected, the low-order 5 bits
of the value is used as the register number, in this example, as the Rb register number. Again probably
not what the programmer intended.

The moral of the story is that when writing UASM assembly language programs, you have to keep your
wits about you and recognize that the interpretation of an operand is determined by the opcode macro,
not by the way you wrote the operand.
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Labels and Offsets

Labels and Offsets

Input file value is the address

N =12 of a memory location
ADDC(r31, N, ri)

« BEQ/BNE macros compute
ADDC(r31, 1, ro)

MUL(rO, r1, re) offset automatically
: r r r

2 2 . . l
SUBC(r1, 1, ri) Labels hide addresses!

I::> BNE(ri1, , r31) Symbol table

Qutput file
110000 00001 11111 00000000 0001100 [Ox08]
110000 00000 11111 0EOP0EE0 0REEEEel [exe4] rl |
100010 00000 OPEO1 G0RGO PEEEARAARD [Bx08]
110001 02001 ORGPl E0AEPBEA P0EERARL [OxaC] 31 31
911101 11111 eeeel 11111111 111111el [exle] N 12

r0 0

offset = (label - <addr of BNE/BEQ>)/4 - 1 loop 8
= (8-16)/4 - 1 = -3

Figure 7.

Recall from Lecture 9 that branch instructions use the 16-bit constant field of the instruction to encode
the address of the branch target as a word offset from the location of the branch instruction. Well,
actually the offset is calculated from the instruction immediately following the branch, so an offset of
-1 would refer to the branch itself.

The calculation of the offset is a bit tedious to do by hand and would, of course, change if we added
or removed instructions between the branch instruction and branch target. Happily macros for the
branch instructions incorporate the necessary formula to compute the offset from the address of the
branch and the address of the branch target. So we just specify the address of the branch target, usually
with a label, and let UASM do the heavy lifting.

Here we see that BNE branches backwards by three instructions (remember to count from the instruc-
tion following the branch) so the offset is -3. The 16-bit two’s complement representation of -3 is the
value placed in the constant field of the BNE instruction.
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Mighty Macroinstructions

Mighty Macroinstructions

Macros are parameterized abbreviations, or shorthand

// Macro to generate 4 consecutive bytes:
.macro consec(n) n n+l n+2 n+3

// Invocation of above macro:
consec (37)

Is expanded to
= 37 37+1 37+2 37+3 = 37 38 39 40

Here are macros for breaking multi-byte data types into byte-
sized chunks

// Assemble into bytes, little-endian:

.macro WORD (x) x%256 (x/256)%256

.macro LONG (x) WORD (x) WORD (x >> 16)

. = 0x100
LONG (Oxdeadbeef) Boy, that’s hard to read.
. Maybe, those big-endian
Has same effect as: .
types do have a point.
Oxef Oxbe Oxad Oxde ‘:/’EA
Mem: 0x100 0x101 0x102 0x103

Figure 8.

Let’s take a closer look at how macros work in UASM. Here we see the definition of the macro “consec”
which has a single parameter “n”. The body of the macro is a sequence of four expressions. When
there’s an invocation of the “consec” macro, in this example with the argument 37, the body of the
macro is expanded replacing all occurrences of “n” with the argument 37. The resulting text is then
processed as if it had appeared in place of the macro invocation. In this example, the four expressions
are evaluated to give a sequence of four values that will be placed in the next four bytes of the output
array.

Macro expansions may contain other macro invocations, which themselves will be expanded, continu-
ing until all that’s left are expressions to be evaluated. Here we see the macro definition for WORD,
which assembles its argument into two consecutive bytes. And for the macro LONG, which assembles
its argument into four consecutive bytes, using the WORD macro to process the low 16 bits of the value,
then the high 16 bits of the value.

These two UASM statements cause the constant OXDEADBEEF to converted to 4 bytes, which are
deposited in the output array starting at index 0x100.

Note that the Beta expects the least-significant byte of a multi-byte value to be stored at the lowest
byte address. So the least-significant byte OXEF is placed at address 0x100 and the most-significant
byte OxDE is placed at address 0x103. This is the “little-endian” convention for multi-byte values: the
least-significant byte comes first. Intel’s x86 architecture is also little-endian.

There is a symmetrical “big-endian” convention where the most-significant byte comes first. Both
conventions are in active use and, in fact, some ISAs can be configured to use either convention! There’s

10
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no “right answer” for which convention to use, but the fact that there two conventions means that we
have to be alert for the need to convert the representation of multi-byte values when moving values
between one ISA and another, e.g., when we send a data file to another user.

As you can imagine there are strong advocates for both schemes who are happy to defend their point
of view at great length. Given the heat of the discussion, it’s appropriate that the names for the
conventions were drawn from Jonathan Swift’s “Gulliver’s Travels” in which a civil war is fought over
whether to open a soft-boiled egg at its big end or its little end.

Assembly of Instructions

Assembly of Instructions

|OPCODE‘ RC | RA | RB | UNUSED |

11000400004 01111 1000000000000000|

// Assemble Beta op instructions @ 5 o . . q N
_macro betaop (OP,RA,RB,RC) { .align 4” ensures instructions will begin

.align 4 on word boundary (i.e., address = 0 mod 4)
LONG ( (OP<<26) + ( (RC%32) <<21) + ( (RA%32) <<16) + ( (RB%32) <<11) )

}

// Assemble Beta opc instructions
.macro betaopc (OP,RA,CC,RC) {

.align 4

LONG ( (OP<<26) + ( (RC%32) <<21)+( (RA%32)<<16) +(CC % 0x10000))
}

// Assemble Beta branch instructions
.macro betabr (OP,RA,RC,LABEL) betaopc (OP,RA, ( (LABEL- (.+4))>>2) ,RC)

For example:
.macro ADDC (RA,C,RC) betaopc (0x30,RA,C,RC)

ADDC (R15, -32768, RO) --> betaopc (0x30,15,-32768,0)

Figure 9.

Let’s look at the macros used to assemble Beta instructions. The BETAOP helper macro supports the
3-register instruction format, taking as arguments the values to be placed in the OPCODE, Ra, Rb, and
Rc fields. The “.align 4” directive is a bit of administrative bookkeeping to ensure that instructions will
have a byte address that’s a multiple of 4, i.e., that they span exactly one 32-bit word in memory. That’s
followed by an invocation of the LONG macro to generate the 4 bytes of binary data representing the
value of the expression shown here. The expression is where the actual assembly of the fields takes
place. Each field is limited to requisite number of bits using the modulo operator (%), then shifted left
(«) to the correct position in the 32-bit word.

And here are the helper macros for the instructions that use a 16-bit constant as the second operand.

Let’s follow the assembly of an ADDC instruction to see how this works. The ADDC macro expands into
an invocation of the BETAOPC helper macro, passing along the correct value for the ADDC opcode,
along with the three operands.

11
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The BETAOPC macro does the following arithmetic: The OP argument, in this case the value 0x30,
is shifted left to occupy the high-order 6 bits of the instruction. Then the RA argument, in this case
15, is placed in its proper location. The 16-bit constant -32768 is positioned in the low 16 bits of the
instruction. And, finally, the Rc argument, in this case 0, is positioned in the Rc field of the instruction.

You can see why we call this processing “assembling an instruction”. The binary representation of an
instruction is assembled from the binary values for each of the instruction fields. It’s not a complicated
process, but it requires a lot of shifting and masking, tasks that we’re happy to let a computer handle.

Example Assembly

Example Assembly

ADDC (R3,1234,R17)

@ expand ADDC macro with RA=R3, C=1234, RC=R17
betaopc (0x30,R3,1234,R17)

ﬁ expand betaopc macro with OP=0x30, RA=R3, CC=1234, RC=R17
.align 4
LONG ( (0x30<<26) + ( (R17%32)<<21) + ( (R3%32)<<16)+ (1234 % 0x10000))

expand LONG macro with X=0xC22304D2
WORD (0xC22304D2) WORD (0xC22304D2 >> 16)

ﬁ expand first WORD macro with X=0xC22304D2
0xC22304D2%256 (0xC22304D2/256) %256 WORD (0xC223)

ﬁ evaluate expressions, expand second WORD macro with X=0xC223
0xD2 0x04 0xC223%256 (0xC223/256) %256
evaluate expressions

0xD2 0x04 0x23 0xC2

Figure 10.

Here’s the entire sequence of macro expansions that assemble this ADDC instruction into an appropriate
32-bit binary value in main memory.

You can see that the knowledge of Beta instruction formats and opcode values is built into the bodies
of the macro definitions. The UASM processing is actually quite general - with a different set of macro
definitions it could process assembly language programs for almost any ISA!

12
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UASM Macros for Beta Instructions

UASM Macros for Beta Instructions

(defined in beta.uasm)

| BETA Instructions:

.macro ADD (RA,RB,RC) betaop (0x20,RA,RB, RC)

.macro ADDC (RA,C,RC) betaopc (0x30,RA,C,RC)

.macro AND (RA,RB,RC) betaop (0x28,RA, RB,RC)

.macro ANDC (RA,C,RC) betaopc (0x38,RA,C,RC)

.macro MUL (RA, RB, RC) betaop (0x22,RA,RB,RC)

.macro MULC (RA,C,RC) betaopc (0x32,RA,C,RC)

.macro LD(RA,CC,RC) betaopc (0x18,RA,CC,RC)

.macro LD (CC,RC) betaopc (0x18,R31,0C,Rc)—— Convenience
.macro ST (RC,CC,RA) betaopc (0x19,RA,CC,RC) y macros so we
.macro ST (RC,CC) betaopc (0x19,R31,CC,RC) // don’t have to

Ve specify R31...

.macro BEQ(RA,LABEL,RC) betabr (0x1C,RA, RC,,fi/ABEL)
.macro BEQ (RA, LABEL) betabr (0x1C,RA, rB,l, LABEL)
.macro BNE (RA, LABEL,RC) betabr (0x1D,RA,RC,LABEL)
.macro BNE (RA, LABEL) betabr (0x1D,RA, r31, LABEL)

Figure 11.

All the macro definitions for the Beta ISA are provided in the beta.uasm file, which is included in each
of the assembly language lab assignments. Note that we include some convenience macros to define
shorthand representations that provide common default values for certain operands. For example,
except for procedure calls, we don’t care about the PC+4 value saved in the destination register by
branch instructions, so almost always would specify R31 as the Rc register, effectively discarding
the PC+4 value saved by branches. So we define two-argument branch macros that automatically
provide R31 as the destination register. Saves some typing, and, more importantly, it makes it easier to
understand the assembly language program.

13
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Pseudoinstructions

Pseudoinstructions

+ Convenience macros that expand to one or more real instructions
* Extend set of operations without adding instructions to the ISA

/ Convenience macros so we don’t have to use R31
.macro LD(CC,RC) LD(R31,CC,RC)

.macro ST(RA,CC) ST(RA,CC,R31)

.macro BEQ(RA,LABEL)  BEQ(RA,LABEL,R31)

.macro BNE(RA,LABEL)  BNE(RA,LABEL,R31)

.macro MOVE(RA,RC) ADD(RA,R31,RC) / Reg[RC] <- Reg[RA]
.macro CMOVE(CC,RC) ADDC(R31,C,RC) / Reg[RC] <- C
.macro COM(RA,RC) XORC(RA, -1,RC) Reg[RC] <- ~Reg[RA]
.macro NEG(RB,RC) SUB(R31,RB,RC) Reg[RC] <- -Reg[RB]
.macro NOP() ADD(R31,R31,R31) do nothing

.macro BR(LABEL) BEQ(R31, LABEL) // always branch
.macro BR(LABEL,RC) BEQ(R31, LABEL,RC) // always branch
.macro CALL(LABEL) BEQ(R31, LABEL,LP) / call subroutine
.macro BF(RA, LABEL,RC) BEQ(RA, LABEL, RC) / @ is false

.macro BF(RA,LABEL) BEQ(RA, LABEL)

.macro BT(RA, LABEL,RC) BNE (RA, LABEL, RC) / 1 is true

.macro BT(RA,LABEL) BNE(RA, LABEL)

// Multi-instruction sequences

.macro PUSH(RA) ADDC(SP,4,SP) ST(RA,-4,SP)

.macro POP(RA) LD(SP,-4,RA)  ADDC(SP,-4,SP)

Figure 12.

Here are a whole set of convenience macros intended to make programs more readable. For exam-
ple, unconditional branches can be written using the BR() macro rather than the more cumbersome
BEQ(R31,...). And it’s more readable to use branch-false (BF) and branch-true (BT) macros when testing
the results of a compare instruction.

And note the PUSH and POP macros at the bottom of page. These expand into multi-instruction
sequences, in this case to add and remove values from a stack data structure pointed to by the SP
register.

We call these macros “pseudo instructions” since they let us provide the programmer with what appears
a larger instruction set, although underneath the covers we’ve just using the same small instruction
repertoire developed in Lecture 9.
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Factorial with Pseudoinstructions

Figure 13.

Factorial with Pseudoinstructions

Before

N =12
ADDC(r31, N, ri)
ADDC(r31, 1, re)

: MUL(re, ri, re)

SUBC(ri, 1, ri)
BNE(r1, , r31)

After

N = 12
CMOVE(N, ri)
CMOVE(1, re)

: MUL(re, ri, re)

SUBC(rl, 1, ri)
BNE(rl, )

In this example we’ve rewritten the original code we had for the factorial computation using pseudo

instructions. For example, CMOVE is a pseudo instruction for moving small constants into a register. It’s

easier for us to read and understand the intent of a “constant move” operation than an “add a value to

0” operation provided by the ADDC expansion of CMOVE. Anything we can do to remove the cognitive

clutter will be very beneficial in the long run.
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Raw Data
Raw Data
* LONG assembles a 32-bit value
— Variables Symbol table
— Constants > 16 bits
LONG(12) N o
: LONG(@xdeadbeef)
factN 4
LD(N, r1) LD(r31, N, rl)
CMOVE(1, re)
: MUL(re, ri, re) LD(31, @, 1)
SUBC(r1, 1, ri) Reg[1] € Mem[Reg[31] + 0]
BT(ri, ) < Mem[0]
ST(re, ) <12
Figure 14.

So far we've talked about assembling instructions. What about data? How do we allocate and initialize
data storage and how do we get those values into registers so that they can be used as operands?

Here we see a program that allocates and initializes two memory locations using the LONG macro.
We’ve used labels to remember the addresses of these locations for later reference.

When the program is assembled the values of the label N and factN are 0 and 4 respectively, the
addresses of the memory locations holding the two data values.

To access the first data value, the program uses a LD instruction, in this case one of convenience macros
that supplies R31 as the default value of the Ra field. The assembler replaces the reference to the label
N with its value 0 from the symbol table. When the LD is executed, it computes the memory address by
adding the constant (0) to the value of the Ra register (which is R31 and hence the value is 0) to get the
address (0) of the memory location from which to fetch the value to be placed in R1.
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UASM Expressions and Layout

* Values can be written as expressions
— Assembler evaluates expressions, they are not translated to
instructions to compute the value!
A =7+ 3 * ox0ccal
B A -3

* The “.” (period) symbol means the next byte address to be
filled

— Can read or write to it

— Useful to control data layout or leave empty space (e.g., for
arrays)

. = 0x100 // Assemble into ©x100
LONG(@xdeadbeef)

k = . // Symbol “k” has value ©0x104
LONG(@xeedec@de)

. = .+16 // Skip 16 bytes
LONG(@xcoffeeee)

Figure 15.

The constants needed as values for data words and instruction fields can be written as expressions.
These expressions are evaluated by the assembler as it assembles the program and the resulting value
is used as needed. Note that the expressions are evaluated at the time the assembler runs. By the time
the program runs on the Beta, the resulting value is used. The assembler does NOT generate ADD and
MUL instructions to compute the value during program execution. If a value is needed for an instruction
field orinitial data value, the assembler has to be able to perform the arithmetic itself. If you need the
program to compute a value during execution, you have to write the necessary instructions as part of
your program.

One last UASM feature: there’s a special symbol “”, called “dot”, whose value is the address of the next
main memory location to be filled by the assembler when it generates binary data. Initially “.” is 0 and
it’s incremented each time a new byte value is generated.

We can set the value of “” to tell the assembler where in memory we wish to place a value. In this
example, the constant 0OXDEADBEEF is placed into location 0x100 of main memory. And we can use “”
in expressions to compute the values for other symbols, as shown here when defining the value for the
symbol “k”. In fact, the label definition “k:” is exactly equivalent to the UASM statement “k =.”

We can even increment the value of “” to skip over locations, e.g., if we wanted to leave space for an un
initialized array.
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Summary: Assembly Language

* Low-level language, symbolic representation of
sequence of bytes. Abstracts:
— Bit-level representation of instructions
— Addresses

» Elements: Values, symbols, , macros

* Values can be constants or expressions

* Symbols are symbolic representations of values
are symbols for addresses

= Macros are expanded to byte sequences:

— Instructions
— Pseudoinstructions (translate to 1+ real instructions)
— Raw data

« Can control where to assemble with “.” symbol

Figure 16.

And that’s assembly language! We use assembly language as a convenient notation for generating the
binary encoding for instructions and data. We let the assembler build the bit-level representations we
need and to keep track of the addresses where these values are stored in main memory.

UASM itself provides support for values, symbols, labels and macros.
Values can be written as constants or expressions involving constants.

We use symbols to give meaningful names to values so that our programs will be more readable and
more easily modified. Similarly, we use labels to give meaningful names to addresses in main memory
and then use the labels in referring to data locations in LD or ST instructions, or to instruction locations
in branch instructions.

Macros hide the details of how instructions are assembled from their component fields.
And we can use “.” to control where the assembler places values in main memory.

The assembler is itself a program that runs on our computer. That raises an interesting “chicken and
egg problem”: how did the first assembler program get assembled into binary so it could run on a
computer? Well, it was hand-assembled into binary. | suspect it processed a very simple language
indeed, with the bells and whistles of symbols, labels, macros, expression evaluation, etc. added only
after basic instructions could be assembled by the program. And I’m sure they were very careful not to
lose the binary so they wouldn’t have to do the hand-assembly a second time!
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Universality?

* Recall: We say a set of Boolean gates is universal if
we can implement any Boolean function using only
gates from that set.

* What problems can we solve with a von Neumann
computer? (e.g., the Beta)
— Everything that FSMs can solve?
— Every problem?
— Does it depend on the ISA?

* Needed: a mathematical model of computation
— Prove what can be computed, what can’t

Figure 17.

An interesting question for computer architects is what capabilities must be included in the ISA? When
we studied Boolean gates in Part 1 of the course, we were able to prove that NAND were universal, i.e.,
that we could implement any Boolean function using only circuits constructed from NAND gates.

We can ask the corresponding question of our ISA: is it universal, i.e., can it be used to perform any
computation? what problems can we solve with a von Neumann computer? Can the Beta solve any
problem FSMs can solve? Are there problems FSMs can’t solve? If so, can the Beta solve those problems?
Do the answers to these questions depend on the particular ISA?

To provide some answers, we need a mathematical model of computation. Reasoning about the model,
we should be able to prove what can be computed and what can’t. And hopefully we can ensure that
the Beta ISA has the functionality needed to perform any computation.
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Models of Computation

Models of Computation

The roots of computer science stem from « switches

the evaluation of many alternative

mathematical “models” of computation to - gates

determine the classes of computations ) )

each could represent. * combinational
logic

An elusive goal was to find a universal
model, capable of representing all
practical computations...

We've got FSMs...
what else do we need?

e memories

e FSMs

Are FSMs the ultimate
digital computing
device?

Figure 18.

The roots of computer science stem from the evaluation of many alternative mathematical models of
computation to determine the classes of computation each could represent. An elusive goal was to find
a universal model, capable of representing all realizable computations. In other words if a computation
could be described using some other well-formed model, we should also be able to describe the same
computation using the universal model.

One candidate model might be finite state machines (FSMs), which can be built using sequential logic.
Using Boolean logic and state transition diagrams we can reason about how an FSM will operate on
any given input, predicting the output with 100% certainty.

Are FSMs the universal digital computing device? In other words, can we come up with FSM implemen-
tations that implement all computations that can be solved by any digital device?
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FSM Limitations

Despite their usefulness and flexibility, there are common
problems that cannot be solved by any FSM. For instance:

Well-formed Parentheses Checker:

(OO — caren | OK
ecker Given any string of coded left &
right parens, outputs 1 if it is

balanced, else 0.

“COYO)———f Paren L Ny

Checker Simple, easy to describe.

Can this problem be solved using an FSM??? NO'

) . ) I know how
PROBLEM: Requires arbitrarily many states, _ to fix that!

depending on input. Must "COUNT"
unmatched left parens. An FSM can only
keep track of a finite number of unmatched
parens: for every FSM, we can find a string it
can’t check.

Alan Turing

Figure 19.

Despite their usefulness and flexibility, there are common problems that cannot be solved by any FSM.
For example, can we build an FSM to determine if a string of parentheses (properly encoded into a
binary sequence) is well-formed? A parenthesis string is well-formed if the parentheses balance, i.e.,
for every open parenthesis there is a matching close parenthesis later in the string. In the example
shown here, the input string on the top is well-formed, but the input string on the bottom is not. After
processing the input string, the FSM would output a 1 if the string is well-formed, 0 otherwise.

Can this problem be solved using an FSM? No, it can’t. The difficulty is that the FSM uses its internal
state to encode what it knows about the history of the inputs. In the paren checker, the FSM would
need to count the number of unbalanced open parens seen so far, so it can determine if future input
contains the required number of close parens. But in a finite state machine there are only a fixed
number of states, so a particular FSM has a maximum count it can reach. If we feed the FSM an input
with more open parens than it has the states to count, it won’t be able to check if the input string is
well-formed.

The “finite-ness” of FSMs limits their ability to solve problems that require unbounded counting. Hmm,
what other models of computation might we consider? Mathematics to the rescue, in this case in the
form of a British mathematician named Alan Turing.
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Turing Machines

Turing Machines

Alan Turing was one of a group Bounded tape configuration
of researchers studying can be expressed as a
alternative models of (largel) integer
computation. N\
¢Ioloolo]ofofo]]+J+]ofo]ofoe[ ¢

He proposed a conceptual model
consisting of an FSM combined

with an infinite digital tape that
could be read and written at

each step.
*encode input as symbols on tape
*FSM reads tape/writes symbols/ FSMs can be enumerated and
changes state until it halts given a (very large) integer index.

A ded t
nswer encoded on tape We can talk about TM 347

running on input 51, producing

Turing’s model (like others of the an answer of 42,
time) solves the "FINITE" problem TMs as integer functions.
of FSMs. y = TMilx]

Figure 20.

In the early 1930’s Alan Turing was one of many mathematicians studying the limits of proof and
computation. He proposed a conceptual model consisting of an FSM combined with a infinite digital
tape that could read and written under the control of the FSM. The inputs to some computation
would be encoded as symbols on the tape, then the FSM would read the tape, changing its state as
it performed the computation, then write the answer onto the tape and finally halting. Nowadays,
this model is called a Turing Machine (TM). Turing Machines, like other models of the time, solved the
“finite” problem of FSMs,

So how does all this relate to computation? Assuming the non-blank input on the tape occupies a
finite number of adjacent cells, it can be expressed as a large integer. Just construct a binary number
using the bit encoding of the symbols from the tape, alternating between symbols to the left of the
tape head and symbols to the right of the tape head. Eventually all the symbols will be incorporated
into the (very large) integer representation.

So both the input and output of the TM can be thought of as large integers, and the TM itself as
implementing an integer function that maps input integers to output integers.

The FSM brain of the Turing Machine can be characterized by its truth table. And we can systematically
enumerate all the possible FSM truth tables, assigning an index to each truth table as it appears in the
enumeration. Note that indices get very large very quickly since they essentially incorporate all the
information in the truth table. Fortunately we have a very large supply of integers!

We’ll use the index for a TM’s FSM to identify the TM as well. So we can talk about TM 347 running on
input 51, producing the answer 42.
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Other Models of Computation

Other Models of Computation...

Turing Machines [Turing] Recursive Functions [Kleene]
F(0,x) = x
F(1+y,x) = 1+F(x,y)

(define (fact n) I
(... (fact (- n 1))

-

MoTol1TolpT1T1ToTol f

Stephen
Kleene

Alan Turing

Lambda calculus [Church, Curry, Rosser...]

3 Production Systems [Post, Markov]
~ AX.AY.XXY

(lambda (x) (lambda (y) (x (x y)))) ‘ e

."‘
Alonzo f / llf. 4TS
Church Emile Post

a—> B

IF pulse=0 THEN
patient=dead

Figure 21.

There are many other models of computation, each of which describes a class of integer functions

where a computation is performed on an integer input to produce an integer answer. Kleene, Post and

Turing were all students of Alonzo Church at Princeton University in the mid-1930’s. They explored

many other formulations for modeling computation: recursive functions, rule-based systems for string

rewriting, and the lambda calculus. They were all particularly intrigued with proving the existence of

problems unsolvable by realizable machines. Which, of course, meant characterizing the problems

that could be solved by realizable machines.
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Computability

FACT: Each model studied is capable of computing exactly the
same set of integer functions!

Proof Technique:
Constructions that translate between models

BIG IDEA:
Computability, independent of computation scheme chosen

Church's Thesis:

unproved, but

1/
Every discrete function computable by ANY ggg;?:df

realizable machine is computable by some
Turing machine.

f(x) computable <> for some k, all x
f(x) = Ty[x]

Figure 22.

It turned out that each model was capable of computing exactly the same set of integer functions!
This was proved by coming up with constructions that translated the steps in a computation between
the various models. It was possible to show that if a computation could be described by one model,
an equivalent description exists in the other model. This lead to a notion of computability that was
independent of the computation scheme chosen. This notion is formalized by Church’s Thesis, which
says that every discrete function computable by any realizable machine is computable by some Turing
Machine. So if we say the function f(z) is computable, that’s equivalent to saying that there’sa TM
that given x as an input on its tape will write f () as an output on the tape and halt.

As yet there’s no proof of Church’s Thesis, but it’s universally accepted that it’s true. In general “com-
putable” is taken to mean “computable by some TM”,

If you’re curious about the existence of uncomputable functions, please see the optional video at the
end of this lecture.
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Turing Machines Galore!

meanwhile...

Turing machines Galore!

“special-purpose” /ToToTiToTol1TiTolol/
Turing Machines....
lofoTiTolol1T1ToTo
P FSM
JoloTi[ololiTiTolol, Factorization
- Primality Test
FSM
Multiplication Is there an alternative to
infinitely many ad-hoc Turing
Machines?

Sorting

Figure 23.

Okay, we’ve decided that Turing Machines can model any realizable computation. In other words for
every computation we want to perform, there’s a (different) Turing Machine that will do the job. But
how does this help us design a general-purpose computer? Or are there some computations that will
require a special-purpose machine no matter what?
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The Universal Function

The Universal Function

Here’s an interesting function to explore: the Universal
function, U, defined by
it sure would be
-~ neat to have a
. . single, general-
[U(k, J) = ka] ] purpose

machine.

Could this be computable???

SURPRISE! U is computable by a Turing Machine:
k—

Ty T[]

j—

In fact, there are infinitely many such machines. Each is
capable of performing any computation that can be
performed by any TM!

Figure 24.

What we’d like to find is a universal function U: it would take two arguments, k and j, and then compute
the result of running T}, on input j. Is U computable, i.e., is there a universal Turing Machine 7,7 If so,

then instead of many ad-hoc TMs, we could just use Ty to compute the results for any computable
function.

Surprise! U is computable and Ty exists. If fact there are infinitely many universal TMs, some quite
simple - the smallest known universal TM has 4 states and uses 6 tape symbols. A universal machine is
capable of performing any computation that can be performed by any TM!
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Universality
Universality
What’s going on here?
k] . k encodes a “program” -a description
i TU s Tk[]] of some arbitrary machine.
j encodes the input data to be used.
Ty interprets the program, emulating
its processing of the data!
KEY IDEA: Interpretation.
Manipulate coded representations of
computing machines, rather than the
machines themselves.
Figure 25.

What’s going on here? k encodes a “program” - a description of some arbitrary TM that performs a
particular computation. jencodes the input data on which to perform that computation. Ty “interprets”
the program, emulating the steps T}, will take to process the input and write out the answer. The notion
of interpreting a coded representation of a computation is a key idea and forms the basis for our stored
program computer.
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Turing Universality

Turing Universality

The Universal Turing Machine is the paradigm for modern
general-purpose computers!

Basic threshold test: Is your computer Turing Universal ?
» If so, it can emulate every other Turing machine!
* Thus, your computer can compute any computable
function

To show your computer is Universal: demonstrate that it can
emulate some known UTM.
* Actually given finite memory, can only emulate UTMs +
inputs up to a certain size
* This is not a high bar: conditional branches (BEQ) and
some simple arithmetic (SUB) are enough.

Figure 26.

The Universal Turing Machine is the paradigm for modern general-purpose computers. Given an ISA

we want to know if it’s equivalent to a universal Turing Machine. If so, it can emulate every other TM

and hence compute any computable function.

How do we show our computer is Turing Universal? Simply demonstrate that it can emulate some

known Universal Turing Machine. The finite memory on actual computers will mean we can only

emulate UTM operations on inputs up to a certain size, but within this limitation we can show our

computer can perform any computation that fits into memory.

As it turns out this is not a high bar: so long as the ISA has conditional branches and some simple

arithmetic, it will be Turing Universal.
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Coded Algorithms: Key to CS

data vs hardware

Py — Algorithms as data: enables
COMPILERS: analyze, optimize, transform behavior

TcompiLer x-to-¥[Px] = Py, such that Ty [P zl = Ty[Py, 2]

Pgm
* E Py ]’ Jade

'.’A \ . J~ad
N ¥ [ pgnl
LANGUAGE DESIGN: Separate

specification from implementation
* C, Java, JSIM, Linux, ... all run on

SOFTWARE ENGINEERING: X86, Sun, ARM, JVM, CLR, ...
Composition, iteration, * Parallel development paths:
abstraction of coded behavior » Language/Software design
F(x) = g(h(x), p((a(x))) * Interpreter /Hardware design

Figure 27.

This notion of encoding a program in a way that allows it to be data to some other program is a key
idea in computer science.

We often translate a program Px written to run on some abstract high-level machine (eg, a program
in C or Java) into, say, an assembly language program Py that can be interpreted by our CPU. This
translation is called compilation.

Much of software engineering is based on the idea of taking a program and using it as as component in
some larger program.

Given a strategy for compiling programs, that opens the door to designing new programming languages
that let us express our desired computation using data structures and operations particularly suited to
the task at hand.

So what have we learned from the mathematicians’ work on models of computation? Well, it’s nice to
know that the computing engine we’re planning to build will be able to perform any computation that
can be performed on any realizable machine. And the development of the universal Turing Machine
model paved the way for modern stored-program computers. The bottom line: we’re good to go with
the Beta ISA!
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Uncomputability (!)

Uncomputable functions: There are well-defined discrete
functions that a Turing machine cannot compute
— No algorithm can compute f(x) for arbitrary x in finite number of
steps
— Not that we don’t know algorithm - can prove no algorithm exists

— Corollary: Finite memory is not the only limiting factor on
whether we can solve a problem

The most famous uncomputable function is the so-called
Halting function, fi;(k, j), defined by:

fu(k, j) = 1 if T,[j] halts;

0 otherwise.

fu(k, j) determines whether the k'™ TM halts when given a tape
containing j.

Figure 28.

We’ve discussed computable functions. Are there uncomputable functions?

Yes, there are well-defined discrete functions that cannot be computed by any TM, i.e., no algorithm can
compute f(x) for arbitrary finite x in a finite number of steps. It’s not that we don’t know the algorithm,
we can actually prove that no algorithm exists. So the finite memory limitation of FSMs wasn’t the only
barrier as to whether we can solve a problem.

The most famous uncomputable function is the so-called Halting function. When TMs undertake a
computation there two possible outcomes. Either the TM writes an answer onto the tape and halts, or
the TM loops forever. The Halting function tells which outcome we’ll get: given two integer arguments k
and j, the Halting function determines if the kth TM halts when given a tape containing j as the input.
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Why [ is Uncomputable

Figure 29.

Why f,, is Uncomputable

If fy is computable, it is equivalent to some TM (say, Ty):

k—|

1 iff T [j] halts
T k »
j— il else O

Then Ty (N for “Nasty”), which must be computable if Ty is:

Tn

HALT

Finally, consider giving N as an argument to Ty:

. v Ty can’t be
TN[N]: LOOPS lf TN[N] haltS; ﬁad]choﬂ! Cgmputable, hence
HALTS if Tx[N] loops (] T cam' cither!

1

LOOP | Ty[x]: LOOPS if T,[x] halts;

N N pid »

s | T ﬁ@ HALTS if T,[x] loops
0

Let’s quickly sketch an argument as to why the Halting function is not computable. Well, suppose it

was computable, then it would be equivalent to some TM, say Ty;.

So we can use Ty to build another TM, Ty (the “N” stands for nasty!) that processes its single argument
and either LOOPs or HALTs. Ty [X] is designed to loop if TM X given input X halts. And vice versa: T [X]

halts if TM X given input X loops. The idea is that 7 [ X] does the opposite of whatever T'x [ X] does.
T is easy to implement assuming that we have T to answer the “halts or loops” question.

Now consider what happens if we give N as the argument to (T_N). From the definition of T, T [N]
will LOOP if the halting function tells us that T [/V] halts. And Ty [ N] will HALT if the halting function
tells us that Ty [ V] loops. Obviously Tx[N] can’t both LOOP and HALT at the same time! So if the
Halting function is computable and Ty exists, we arrive at this impossible behavior for T [NV]. This

tells us that Ty cannot exist and hence that the Halting function is not computable.
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