Computation Structures - Lecture 8

Design Tradeoffs

Computation Structures - Lecture 8

About

This document is part of the "Computation Structures" course, available at https://PersonalComput
e.net/resources/computation-structures.

The objective of this course is to provide a solid foundation on the inner workings of computers, and
how to use them efficiently. Practically, it tries to answer the question "Why is my computer working
like this?" (where "like this" can mean "slow", "fast", "efficient" or "intermittently freezing").

Its intended audience is first and second-year university students, so its prerequisites are high-school
levels of understanding for math and physics, and a beginner-level understanding of programming. It
is also very useful to anyone whose job involves programming, but hasn’t taken a formal course in
Computer Architectures - a topic that is often overlooked in software or math-oriented degrees.

The Course Contents chapters use the materials from the original course (the MIT OpenCourseWare
release), with very small changes (mostly cosmetic in nature).

Where existing, the Real World Implications chapters provide some additional context and explana-
tions, not present in the MIT OpenCourseWare edition.

If you wish to download the "source code" for the course, go to https://github.com/PersonalCompute-
net/computation-structures/.

Credits

Computation Structures (6.004), Spring 2017 - Original course content, from MIT OpenCourseWare.
Course led by Chris Terman, at MIT.
Originally published at https://ocw.mit.edu/6-004S17 and https://github.com/computation-
structures/course/.
Licensed under Creative Commons BY-NC-SA 4.0 - https://ocw.mit.edu/terms.

Eisvogel - LaTeX template and cover artwork.
Created by Pascal Wagler - https://github.com/Wandmalfarbe/.
Originally published at https://github.com/Wandmalfarbe/pandoc-latex-template/.
Licensed under BSD 3-clause license.

Licensing

This work is licensed under a Creative Commons “Attribution- @@@@
NonCommercial-ShareAlike 4.0 International” license.

URL: https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en

https://PersonalCompute.net/resources/computation-structures
https://PersonalCompute.net/resources/computation-structures
https://github.com/PersonalCompute-net/computation-structures/
https://github.com/PersonalCompute-net/computation-structures/
https://ocw.mit.edu/6-004S17
https://github.com/computation-structures/course/
https://github.com/computation-structures/course/
https://ocw.mit.edu/terms
https://github.com/Wandmalfarbe/
https://github.com/Wandmalfarbe/pandoc-latex-template/
https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en
https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en
https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en

Computation Structures - Lecture 8

Course Contents

In this lecture, we’re going to look into optimizing digital systems to make them smaller, faster, higher
performance, more energy efficient, and so on. It would be wonderful if we could achieve all these
goals at the same time and for some circuits we can. But, in general, optimizing in one dimension
usually means doing less well in another. In other words, there are design tradeoffs to be made.

Optimizing Your Design

Optimizing Your Design

There are a large number of implementations of the same
functionality -- each represents a different point in the area-
time-power space

power

Optimization metrics:

1. Area of the design £ -

2. Throughput ?r:’,,, ,,,,,,

3. Latency ! area
4. Power consumption 7 S

5. Energy of executing a task time

6.

& u

©Advanced Micro Devices (with permission) Justin14 (CC BY-SA 4.0)

Figure 1.

Making tradeoffs correctly requires that we have a clear understanding of our design goals for the
system. Consider two different design teams: one is charged with building a high-end graphics card for
gaming, the other with building the Apple watch.

The team building the graphics card is mostly concerned with performance and, within limits, is willing
to trade off cost and power consumption to achieve their performance goals. Graphics cards have a set
size, so there’s a high priority in making the system small enough to meet the required size, but there’s
little to be gained in making it smaller than that.

The team building the watch has very different goals. Size and power consumption are critical since it
has to fit on a wrist and run all day without leaving scorch marks on the wearer’s wrist!

Suppose both teams are thinking about pipelining part of their logic for increased performance. Pipelin-
ing registers are an obvious additional cost. The overlapped execution and higher tcr.x made possible
by pipelining would increase the power consumption and the need to dissipate that power somehow.

Computation Structures - Lecture 8

You can imagine the two teams might come to very different conclusions about the correct course of
action!

This chapter takes a look at some of the possible tradeoffs. But as designers you’ll have to pick and
choose which tradeoffs are right for your design. This is the sort of design challenge on which good
engineers thrive! Nothing is more satisfying than delivering more than anyone thought possible within
the specified constraints.

CMOS Static Power Dissipation

CMOS Static Power Dissipation

MOSFET Tunneling current
through gate oxide: SiO,
is a very good insulator,

(_\e | but when very thin (< 20A)
- = R f electrons can tunnel

= : across.
J

° Current leakage from drain to source even
though MOSFET is “off” (aka sub- FINFET
threshold conduction)
+ Leakage gets larger as difference
between Vpy and “off” gate voltage (eg,
Vo in an nfet) gets smaller.
Significant as Vy has become smaller.
« Fix: 3D FINFET wraps gate around
inversion region

Sour:e’

rene Ringworm (CC BY-SA 3.0)

Figure 2.

Our first optimization topic is power dissipation, where the usual goal is to either meet a certain power
budget, or to minimize power consumption while meeting all the other design targets.

In CMOS circuits, there are several sources of power dissipation, some under our control, some not.

Static power dissipation is power that is consumed even when the circuit is idle, i.e., no nodes are
changing value. Using our simple switch model for the operation of MOSFETs, we’d expect CMOS
circuits to have zero static power dissipation. And in the early days of CMOS, we came pretty close
to meeting that ideal. But as the physical dimensions of the MOSFET have shrunk and the operating
voltages have been lowered, there are two sources of static power dissipation in MOSFETSs that have
begun to loom large.

We’ll discuss the effects as they appear in n-channel MOSFETSs, but keep in mind that they appearin
p-channel MOSFETSs too.

Computation Structures - Lecture 8

The first effect depends on the thickness of the MOSFET’s gate oxide, shown as the thin yellow layer in
the MOSFET diagram on the left. In each new generation of integrated circuit technology, the thickness
of this layer has shrunk, as part of the general reduction in all the physical dimensions. The thinner
insulating layer means stronger electrical fields that cause a deeper inversion layer that leads to NFETs
that carry more current, producing faster gate speeds. Unfortunately the layers are now thin enough
that electrons can tunnel through the insulator, creating a small flow of current from the gate to the
substrate. With billions of NFETs in a single circuit, even tiny currents can add up to non-negligible
power drain.

The second effect is caused by current flowing between the drain and source of a NFET that is, in
theory, not conducting because Vg is less than the threshold voltage. Appropriately this effect is
called sub-threshold conduction and is exponentially related to Vas — Vi (a negative value when
the NFET is off). So as Virg has been reduced in each new generation of technology, Vas — Vrp is less
negative and the sub-threshold conduction has increased.

One fix has been to change the geometry of the NFET so the conducting channel is a tall, narrow fin
with the gate terminal wrapped around 3 sides, sometimes referred to as a tri-gate configuration. This
has reduced the sub-threshold conduction by an order of magnitude or more, solving this particular
problem for now.

Neither of these effects is under the control of the system designer, except of course, if they’re free
to choose an older manufacturing process! We mention them here so that you’re aware that newer
technologies often bring additional costs that then become part of the trade-off process.

CMOS Dynamic Power Dissipation |

CMOS Dynamic Power Dissipation

Viy moves from

Vour moves from
LtOHtOL (Hto L to H
Vof E= [P(t)dt
terk= 1/fCLK |_¢ ‘ % C discharges and
then recharges:

dv,,
I Y our

f—cWour . p_¢
Power dissipated d

to discharge C: Power dissipated to recharge C:
Parer = faux Lj‘“ “isrerVour dr Paver = Feux [inearVour dt

= fer [C‘“[/;’; TV dt = fox J, “ ‘:lc%vﬂw dt

- /;,LCf Voirr AVour - /(,ACf our @Vour

= fiC Vin = JaxC

Figure 3.

Computation Structures - Lecture 8

A designer does have some control over the dynamic power dissipation of the circuit, the amount of
power spent causing nodes to change value during a sequence of computations. Each time a node
changes from 0-to-1 or 1-to-0, currents flow through the MOSFET pullup and pulldown networks,
charging and discharging the output node’s capacitance and thus changing its voltage.

Consider the operation of an inverter. As the voltage of the input changes, the pullup and pulldown
networks turn on and off, connecting the inverter’s output node to VDD or ground. This charges
or discharges the capacitance of the output node changing its voltage. We can compute the energy
dissipated by integrating the instantaneous power associated with the current flow through the pullups
and pulldowns over the time taken by the output transition.

The power dissipated across the resistance of the MOSFET channel is simply Ing times Vpg. Here’s
the energy integral for the 1-to-0 transition of the output node, where we’re measuring Ipg using the
equation for the current flowing out of the output node’s capacitor: I = C'dV/dt. Assuming that the
input signal is a clock signal of period tcrx and that each transition is taking half a clock cycle, we
can work through the math to determine that energy dissipated through the pulldown network is
0.5 fCVi3p, where the frequency f tells us the number of such transitions per second, C'is the nodal
capacitance, and Vpp (the power supply voltage) is the starting voltage of the nodal capacitor.

There’s a similar integral for the current dissipated by the pullup network when charging the capacitor
and it yields the same result.

So one complete cycle of charging then discharging dissipates fC'V? joules. Note that all this energy
has come from the power supply - the first half is dissipated when the output node is charged and the
other half stored as energy in the capacitor. Then the capacitor’s energy is dissipated as it discharges.

Computation Structures - Lecture 8

CMOS Dynamic Power Dissipation Il

CMOS Dynamic Power Dissipation

Vy moves from

Vour moves from
LtoHtoL ' HtoLtoH
I_I Vour
terk= l/fCLK |_¢ i‘ g % C discharges and

then recharges:

Power dissipated

= 2
fC Vpp g)er nod? “Back of the envelope”: trends
={fN C Vpp? per chip /1/ f~ 1GHz = 1e9 cycles/sec 1
where N ~ 1e8 changing nodes/cycle 4

f = frequency of charge /discharge C ~ 1fF = le-1g fards/node g

N = number of changing nodes/chip V: 11(\;0 Watt And
atts

Figure 4.

These results are summarized in the lower left. We’ve added the calculation for the energy dissipation
of an entire circuit assuming N of the circuit’s nodes change each clock cycle.

How much energy could be consumed by a modern integrated circuit? Here’s a quick back-of-the-
envelope estimate for a current generation CPU chip. It’s operating at, say, 1 GHz and will have
100 million internal nodes that could change each clock cycle. Each nodal capacitance is around 1
femtofarad and the power supply is about 1V. With these numbers, the estimated power consumption
is 100 watts. We all know how hot a 100W light bulb gets! You can see it would be hard to keep the CPU
from overheating.

This is way too much energy to be dissipated in many applications, and modern CPUs intended, say,
for laptops only dissipate a fraction of this energy. So the CPU designers must have some tricks up
their sleeve, some of which we’ll see in a minute.

But first notice how important it’s been to be able to reduce the power supply voltage in modern
integrated circuits. If we’re able to reduce the power supply voltage from 3.3V to 1V, that alone
accounts for more than a factor of 10 in power dissipation. So the newer circuit can be say, 5 times
larger and 2 times faster with the same power budget!

Newer technologies trends are shown here. The net effect is that newer chips would naturally dissipate
more power if we could afford to have them do so. We have to be very clever in how we use more and
faster MOSFETs in order not to run up against the power dissipation constraints we face.

Computation Structures - Lecture 8

How Can We Reduce Power?

How Can We Reduce Power?

A[31:0)
B[31:0] add
ALUFN[0] ——]

|z
—V
N

What if we could
eliminate unnecessary

transitions? When the
boole

output of a CMOS gate ALUFN[3:0] — |

doesn't change, the gate

doesn't dissipate much
power!

shift

——ALU[31:0]

R

ALUFN|1:0]——|

Z—-
v
cmj
N— TP

ALUFN[2:1] |

Figure 5.

To see what we can do to reduce power consumption, consider the following diagram of an arithmetic
and logic unit (ALU) like the one you’ll design in the final lab in this part of the course. There are
four independent component modules, performing the separate arithmetic, Boolean, shifting and
comparison operations typically found in an ALU. Some of the ALU control signals are used to select
the desired result in a particular clock cycle, basically ignoring the answers produced by the other

modules.

Of course, just because the other answers aren’t selected doesn’t mean we didn’t dissipate energy in
computing them. This suggests an opportunity for saving power! Suppose we could somehow “turn
off” modules whose outputs we didn’t need? One way to prevent them from dissipating power is to
prevent the module’s inputs from changing, thus ensuring that no internal nodes would change and

ALUFN(5:4|

hence reducing the dynamic power dissipation of the “off” module to zero.

Computation Structures - Lecture 8

Fewer Transitions » Lower Power

Fewer Transitions > Lower Power

A[31:0] _':
B[31:0] DQ add)
TR ALUFN[0] [N blg@z—lls in this
o b region make
transitions only
.~ when ALU is doing
» DQ boole a shift operation
ALUFN[3:0]—|
LUF) *
—ALU[31:0]
_bQ shift
ALUFN[1:0]—+ -
ALUFN[5:4] == 11 e Must computation
consume energy?
L . z See §6.5 of

Va_.rlatlonsz Dynamlt?a_lly Vot emp Notes
adjust tc g or Vpp (either N—od /(
overall or in specific ALUFN[2:1]—
regions) to accommodate ALUFN[S:4]
workload.

Figure 6.

One idea is to put latches on the inputs to each module, only opening a module’s input latch if an
answer was required from that module in the current cycle. If a module’s latch stayed closed, its
internal nodes would remain unchanged, eliminating the module’s dynamic power dissipation. This
could save a substantial amount of power. For example, the shifter circuitry has many internal nodes
and so has a large dynamic power dissipation. But there are comparatively few shift operations in most
programs, so with our proposed fix, most of the time those energy costs wouldn’t be incurred.

A more draconian approach to power conservation is to literally turn off unused portions of the circuit
by switching off their power supply. This is more complicated to achieve, so this technique is usually
reserved for special power-saving modes of operation, where we can afford the time it takes to reliably
power the circuity back up.

Another idea is to slow the clock (reducing the frequency of nodal transitions) when there’s nothing for
the circuit to do. This is particularly effective for devices that interact with the real world, where the
time scales for significant external events are measured in milliseconds. The device can run slowly
until an external event needs attention, then speed up the clock while it deals with the event.

All of these techniques and more are used in modern mobile devices to conserve battery power without
limiting the ability to deliver bursts of performance. There is much more innovation waiting to be done
in this area, something you may be asked to tackle as designers!

One last question is whether computation has to consume energy. There have been some interesting
theoretical speculations about this question - see section 6.5 of the course notes to read more.

Computation Structures - Lecture 8

Improving Speed: Adder Example

Improving Speed: Adder Example

I‘Xn—l |Bn—l 1?11—2 ‘Bn—Z A‘Z 1‘32 1}1]‘31 A|O| ‘BO
c A B A B A B A B AJ B
COF, — TCORA Cl|— —] COFA CT—COKA CI—] COFA ci}—o0
S S S S
\ \ | \
Snfl Sn—z SQ Sl SO

Worse-case path: carry propagation from LSB to MSB, e.g.,
when adding 11...111 to 00...001.

tep = (N-1)*(tpp nanps + tep nanp2) + tep xor = O(N)

%r—/

CI to CO Cly., to Sy,

O(N) is read “order N” and tells us that the latency of our adder
grows in proportion to the number of bits in the operands.

Figure 7.

The most straightforward way to improve performance is to reduce the propagation delay of a circuit.
Let’s look at a perennial performance bottleneck: the ripple-carry adder.

To fix it, we first have to figure out the path from inputs to outputs that has the largest propagation
delay, i.e., the path that’s determining the overall tpp. In this case that path is the long carry chain
following the carry-in to carry-out path through each full adder module. To trigger the path add -1 and
1 by setting the A inputs to all 1’s and the B input to all 0’s except for the low-order bit whichis 1. The
final answer is 0, but notice that each full adder has to wait for the carry-in from the previous stage
before it produces 0 on its sum output and generates a carry-out for the next full adder. The carry really
does ripple through the circuit as each full adder in turn does its thing.

To total propagation delay along this path is N-1 times the carry-in to carry-out delay of each full adder,
plus the delay to produce the final bit of the sum.

How would the overall latency change if we, say, doubled the size of the operands, i.e., made N twice
as large? It’s useful to summarize the dependency of the latency on N using the “order-of” notation
to give us the big picture. Clearly as N gets larger the delay of the XOR gate at the end becomes less
significant, so the order-of notation ignores terms that are relatively less important as N grows.

In this example, the latency is ©(V), which tells us that the latency would be expected to essentially
double if we made N twice as large.

Computation Structures - Lecture 8

Performance/Cost Analysis

Performance/Cost Analysis

“Order Of” notation:

"g(n) is of order f(n)" g(n) = O(f(n))
g(n)=0(f(n)) if there exist C, 2 C; > 0
such that for all but finitely many
integral n 2 0

C - f(n)sgn)=sC,- f(n)

—
O(.)implies both 9(n) = O] pyary e
inequalities;
O(..) implies only n?+2n+3 = O(n?)
the second.

since
n2< n2+2n+3 < 2n?2

“almost always”

Figure 8.

The order-of notation, which theoreticians call asymptotic analysis, tells us the term that would

dominate the result as N grows. The yellow box contains the official definition, but an example might

make it easier to understand what’s happening.

Suppose we want to characterize the growth in the value of the equation n? + 2n + 3 as n gets larger.

The dominant term is clearly n? and the value of our equation is bounded above and below by simple

multiples of n?, except for finitely many values of n. The lower bound is always true for n greater than

or equal to 0. And in this case, the upper bound doesn’t hold only for n equal to 0, 1, 2, or 3. For all

other positive values of n the upper inequality is true. So we’d say that this equation was O (n?).

There are actually two variants for the order-of notation. We use the () notation to indicate that

g(n) is bounded above AND below by multiples of f(n). The O() notation is used when g(n) is only

bounded above by a multiple of f(n).

10

Computation Structures - Lecture 8

Carry-Select Adders

3l

9 ;%ﬂ Carry Select Adders

N\

Hmm. Can we get the high half of the adder working in parallel with the low half?

A[31:16] B[31:16 A[15:0] B[15:0]

I
16-bit Adder 16-bit Adder

si31:16] \j\ S[15:0]

Once the low half computes the actual value
of the carry-in to the high half, use it select
the correct version of the high-half addition.

Two copies of the high
half of the adder: one
assumes a carry-in of
“0”, the other carry-in

of “1”.

tep = 16%tpp cico * tepmuxe = half of 32%tpp ¢ _.co

Aha! Apply the same strategy to build 16-bit adders from 8-
bit adders. And 8-bit adders from 4-bit adders, and so on.
Resulting tpp for N-bit adder is ®(log N).

Figure 9.

Here’s a first attempt at improving the latency of our addition circuit. The trouble with the ripple-carry
adder is that the high-order bits have to wait for the carry-in from the low-order bits. Is there a way in
which we can get high half the adder working in parallel with the low half?

Suppose we wanted to build a 32-bit adder. Let’s make two copies of the high 16 bits of the adder, one
assuming the carry-in from the low 16 bits is 0, and the other assuming the carry-in is 1. So now we
have three 16-bit adders, all of which can operate in parallel on newly arriving A and B inputs. Once
the 16-bit additions are complete, we can use the actual carry-out from the low-half to select the
answer from the particular high-half adder that used the matching carry-in value. This type of adder is
appropriately named the carry-select adder.

The latency of this carry-select adder is just a little more than the latency of a 16-bit ripple-carry
addition. This is approximately half the latency of the original 32-bit ripple-carry adder. So at a cost of
about 50% more circuitry, we’ve halved the latency!

As a next step, we could apply the same strategy to halve the latency of the 16-bit adders. And then
again to halve the latency of the 8-bit adders used in the previous step. At each step we halve the adder
latency and add a MUX delay. After log, (V) steps, NV will be 1 and we’re done.

At this point the latency would be some constant cost to do a 1-bit addition, plus log, (V') times the
MUX latency to select the right answers. So the overall latency of the carry-select adder is ©(log V).
Note that log, NV and log N only differ by a constant factor, so we ignore the base of the log in order-of
notation.

The carry-select adder shows a clear performance-size tradeoff available to the designer.

11

Computation Structures - Lecture 8

32-Bit Carry-Select Adder

32-bit Carry Select Adder

Practical Carry-select addition: choose block sizes so that
trial sums and carry-in from previous stage arrive
simultaneously at MUX.

A[31:21] B[31:21] A[20:12] B[20:12] A[11:5] B[11:5] A[4:0] B[4:0]
11x FA (x2) 9x FA (x2) 7x FA (x2) 5x FA k=
L S[4:0]
Cour SUM
CourSI31:21] S[20:12] S[11:5] f:"fw‘/;’/"’;‘g;s
Design goal: have these j;:;gfer for

two sets of signals arrive
simultaneously at each
carry-select mux

Figure 10.

Since adders play a big role in many digital systems, here’s a more carefully engineered version of a
32-bit carry-select adder. You could try this in your ALU design!

The size of the adder blocks has been chosen so that the trial sums and the carry-in from the previous
stage arrive at the carry-select MUX at approximately the same time. Note that since the select signal
for the MUXes is heavily loaded we’ve included a buffer to make the select signal transitions faster.

This carry-select adder is about two-and-a-half times faster than a 32-bit ripple-carry adder at the cost
of about twice as much circuitry. A great design to remember when you’re looking to double the speed
of your ALU!

12

Computation Structures - Lecture 8

Wanted: Faster Carry Logic!

Wanted: Faster Carry Logic!

Let’s see if we can improve the speed by rewriting the equations
for Coyr:

Cour = AB + ACyy + BCpy
= AB + (A + B)Cyy

=G+PCpy where G=ABand P=A+B
generate propagate CO logic using only
3 NANDZ gates!
) Think I'll b
Actually, P is usually defined as AP ﬁu:? for myo,‘;;ow
P = A®B which won’t change cireuit!

Cour but will allow us to express 7
S as a simple function of P and cl
Civ: co

S=P®Cy

G PS

Figure 11.

Here’s another approach to improving the latency of our adder, this time focusing just on the carry
logic. Early on in the course, we learned that by going from a chain of logic gates to a tree of logic gates,
we could go from a linear latency to a logarithmic latency. Let’s try to do that here.

We'll start by rewriting the equations for the carry-out from the full adder module. The final form of
the rewritten equation has two terms. The G, or generate, term is true when the inputs will cause the
module to generate a carry-out right away, without having to wait for the carry-in to arrive. The P, or
propagate, termis true if the module will generate a carry-out only if there’s a carry-in.

So there only two ways to get a carry-out from the module: it’s either generated by the current module
or the carry-in is propagated from the previous module.

Actually, it’s usual to change the logic for the P term from “A OR B” to “A XOR B”. This doesn’t change the
truth table for the carry-out but will allow us to express the sum output as “P XOR carry-in”. Here’s the
schematic for the reorganized full adder module. The little sum-of-products circuit for the carry-out
can be implemented using 3 2-input NAND gates, which is a bit more compact than the implementation
for the three product terms we suggested in Lab 2. Time to update your full adder circuit!

13

Computation Structures - Lecture 8

Carry Look-Ahead Adders (CLA)

Carry Look-ahead Adders (CLA)

We can build a hierarchical carry chain by generalizing our
definition of the Carry Generate/Propagate (GP) Logic. We start by
dividing our addend into two parts, a higher part, H, and a lower
part, L. The GP function can be expressed as follows:

Generate a carry out if the high part

GHL = GH + Py GL generates one, or if the low part generates
< one and the high part propagates it.
PHL = PH PL Propagate a carry if_bmh the high and low
parts propagate theirs.
gl L1
A B A B
l l —|coFA ci|- —]cofppa ci|-
Gu Py P/G generation G P S G P S
= | |
GPpl— =) [
Gur Puc
T Gu Pu g
1%t level of GPp,
Gur Puw
Hierarchical building block lookahead 1 l

Figure 12.

Now consider two adjacent adder modules in a larger adder circuit: we’ll use the label H to refer to the
high-order module and the label L to refer to the low-order module.

We can use the generate and propagate information from each of the modules to develop equations
for the carry-out from the pair of modules treated as a single block.

We’ll generate a carry-out from the block when a carry-out is generated by the H module, or when a
carry-out is generated by the L module and propagated by the H module. And we’ll propagate the
carry-in through the block only if the L module propagates its carry-in to the intermediate carry-out
and H module propagates that to the final carry-out. So we have two simple equations requiring only
a couple of logic gates to implement.

Let’s use these equations to build a generate-propagate (GP) module and hook it to the H and L modules
as shown. The G and P outputs of the GP module tell us under what conditions we’ll get a carry-out
from the two individual modules treated as a single, larger block.

14

Computation Structures - Lecture 8

8-Bit CLA (generate G & P)

8-bit CLA (generate G & P)

O(log N)

Gro Pro

We can build a tree of GP units to compute the generate and
propagate logic for any sized adder. Assuming N is a power of 2,
we’ll need N-1 GP units.

This will let us to quickly compute the carry-ins for each FA!

Figure 13.

We can use additional layers of GP modules to build a tree of logic that computes the generate and
propagate logic for adders with any number of inputs. For an adder with N inputs, the tree will contain
a total of N — 1 GP modules and have a latency that’s O(log V).

In the next step, we’ll see how to use the generate and propagate information to quickly compute the
carry-in for each of the original full adder modules.

15

Computation Structures - Lecture 8

8-Bit CLA (carry generation)

8-bit CLA (carry generation)

Now, given a the value of the carry-in of the least-
significant bit,we can generate the carries for every adder.

cy = G + Preg,

CL = Cin
C7 C6 C5 C4 C3 C2 Cl Co
Gg—lg, Cu Ga—i{g, Cu Gosig, Cu Go—olg, Cu
L L L L
Ps _lp, ngL Py _fp, gﬂc’“_’ Py, gnCL_' Po _lp, CCmCL_’
Tce > c4 Jc2 co
Gs_ C G C;
Odog N) | po 10 e PG el
5-4—P Cip \ 1-0—{P. Cip Notice that the
= inputs on the
G (I"C4 > C6 = Gs.atPs.s C4 co left of each €
P 302G, Cc blocks are the
3-0—lP, & L \ same as the
_ inputs on the
C4 = G3.0*P3,, CO right of each
(&]0] corresponding

GP block.

Figure 14,

Once we’re given the carry-in Cy for the low-order bit, we can hierarchically compute the carry-in for
each full adder module.

Given the carry-in to a block of adders, we simply pass it along as the carry-in to the low-half of the
block. The carry-in for the high-half of the block is computed the using the generate and propagate
information from the low-half of the block.

We can use these equations to build a C module and arrange the C modules in a tree as shown to use
the Cy carry-in to hierarchically compute the carry-in to each layer of successively smaller blocks, until
we finally reach the full adder modules. For example, these equations show how C4 is computed from
Co, and Cg is computed from Cj.

Again the total propagation delay from the arrival of the Cj input to the carry-ins for each full adder is
O(log N).

Notice that the G, and Py, inputs to a particular C module are the same as two of the inputs to the GP
module in the same position in the GP tree.

16

Computation Structures - Lecture 8

8-Bit CLA (complete)

8-bit CLA (complete)

AT BT A6 B6 A5 BS A4 B4 A3 B3 A2 B2 Al Bl A0 BO
|| | | | | | | | | | |

A_B A__B A B A_B A B N B A B
ol omy fom’dy famdh famt, o’
G Ps G P ‘5 G ls P G P s G P s ri ‘s
Gu PrC] i Py
PG iP/Gr
c,
Guz Pan Gun Pin

‘ e |

+ Px
iP/GY

tpp = O(log N)

Notice that we don't

l l l l T need the carry-out
G P T Gn Py Cif output of ﬁie adder any

ningle + —lG, ‘élc |, — |gp/iC S fe— more.

GPpl— ™ . g - ! al cl
Sur Puy T S Pu G| 2

To learn more, look up Kogge-Stone adders on Wikipedia. « >

Figure 15.

We can combine the GP module and C module to form a single carry-lookahead module that passes
generate and propagate information up the tree and carry-in information down the tree. The schematic
at the top shows how to wire up the tree of carry-lookahead modules.

And now we get to the payoff for all this hard work! The combined propagation delay to hierarchically
compute the generate and propagate information on the way up and the carry-in information on the
way down is ©(log V), which is then the latency for the entire adder since computing the sum outputs
only takes one additional XOR delay. This is a considerable improvement over the ©(N) latency of the
ripple-carry adder.

A final design note: we no longer need the carry-out circuitry in the full adder module, so it can be
removed.

Variations on this generate-propagate strategy form the basis for the fastest-known adder circuits. If
you’d like to learn more, look up “Kogge-Stone adders” on Wikipedia.

17

Computation Structures - Lecture 8

Binary Multiplication

Binary Multiplication*

The “Binary”
Multiplication
Table * Actually unsigned binary multiplication
* 0|1
Hey, that
looks like 000
an AND A A A
gate 101 S 1 o
xBs By B; Bg

— A3By AsBy ABy AgBg
AB1 AB; AB; AgB,
A3B2 AxBsy A1By AeB,
+ A3B3; A;B; AB; AgB3

AB,; called a “partial product” —

~ e

~

Multiplying N-digit number by M-digit number gives (N+M)-digit result

Easy part: forming partial products (just an AND gate since B, is either O or 1)
Hard part: adding M N-bit partial products

Figure 16.

One of the biggest and slowest circuits in an arithmetic and logic unit is the multiplier. We’ll start by
developing a straightforward implementation and then, in the next section, look into tradeoffs to make
it either smaller or faster.

Here’s the multiplication operation for two unsigned 4-bit operands broken down into its component
operations. This is exactly how we learned to do it in primary school. We take each digit of the
multiplier (the B operand) and use our memorized multiplication tables to multiply it with each digit
of the multiplicand (the A operand), dealing with any carries into the next column as we process the
multiplicand right-to-left. The output from this step is called a partial product, and then we repeat
the step for the remaining bits of the multiplier. Each partial product is shifted one digit to the left,
reflecting the increasing weight of the multiplier digits.

In our case the digits are just single bits, i.e., they’re 0 or 1 and the multiplication table is pretty simple!
In fact, the 1-bit-by-1-bit binary multiplication circuit is just a 2-input AND gate. And look Mom, no
carries!

The partial products are N bits wide since there are no carries. If the multiplier has M bits, there will be
M partial products. And when we add the partial products together, we’ll get an N+M bit result if we
account for the possible carry-out from the high-order bit.

The easy part of the multiplication is forming the partial products - it just requires some AND gates.
The more expensive operation is adding together the M N-bit partial products.

18

Computation Structures - Lecture 8

Combinational Multiplier

;.i]vf Combinational Multiplier

d—oc . 22) %
co—(:(J_ vl ay @az‘ ﬁa,l 6%‘ 6 :
: & & &
AB 4| HA H FA “—' FA H HA ‘
56 gl e b
M s
g1 15 |8 b
r‘ FA FA FA HA
’ v ' 1

z; Zg Zs Zy4 z3 Z3 Z Zy

Latency = ®(N)
Throughput = ©(1/N)
Hardware = ©(N?)

Figure 17.

Here’s the schematic for the combinational logic needed to implement the 4x4 multiplication, which
would be easy to extend for larger multipliers (we’d need more rows) or larger multiplicands (we’d
need more columns).

The M*N 2-input AND gates compute the bits of the M partial products. The adder modules add the
current row’s partial product with the sum of the partial products from the earlier rows. Actually there
are two types of adder modules. The full adder is used when the modules needs three inputs. The
simpler half adder is used when only two inputs are needed.

The longest path through this circuit takes a moment to figure out. Information is always moving either
down a row or left to the adjacent column. Since there are M rows and, in any particular row, N columns,
there are at most N+M modules along any path from input to output. So the latency is ©(V), since M
and N differ by just some constant factor.

Since this is a combinational circuit, the throughput is just 1/latency. And the total amount of hardware
is O(N?).
In the next section, we’ll investigate how to reduce the hardware costs, or, separately, how to increase

the throughput.

But before we do that, let’s take a moment to see how the circuit would change if the operands were
two’s complement integers instead of unsigned integers.

19

Computation Structures - Lecture 8

2’s Complement Multiplication

2’s Complement Multiplication

Step 1: two's complement operands so high Step 3: add the ones to the partial products
order bit is —2N-1. Must sign extend partial and propagate the carries. All the sign
products and subtract the last one extension bits go away!
. ﬁ ;‘; ﬁ ﬁg _ X3Y0 X2Y0 X1Y0 X0YO
+ _ X3Y1 X2Y1 X1¥1l XOY1
"""""""""" + X3Y2 X2Y2 X1Y2 X0Y2
X3Y0 X3Y0 X3Y0 X3Y0 X3Y0 X2Y0 X1Y0 XO0YO . X3v3 X2Y3 X1Y3 X0Y3
+ X3¥1 X3Y1 X3Y1 X3Y1l X2Y1 X1Y1l XOY1l + 1
+ X3¥2 X3Y2 X3Y2 X2¥2 X1¥2 XO0Y2 i 1 1 1 1

- X3¥3 X3Y3 X2Y3 X1Y3 X0¥3

Step 2: don't want all those extra additions, so Step 4: finish computing the constants...
add a carefully chosen constant, remembering to
subtract it at the end. Convert subtraction into add

of (complement + 1). X3Y0 X2Y0 X1¥0 XO0Y0
X3Y1l x2Y1 X1¥1 X0¥1
X3¥2 X2Y2 X1¥2 X0¥2

X3Y3 X2Y3 X1Y3 X0Y3

X3Y0 X3Y0 X3Y0 X3Y0 X3Y0 X2Y0 X1YO0 X0YO
1

+ 4+ o+

+
+ X3¥1 X3Y1l X3Y1l X3Y¥1l X2Y¥l X1Y1l XOYl

+ 1 1 1
+ X3¥2 X3Y2 X3Y2 X2¥Y2 X1¥2 X0Y2
+ 1
+ X3Y3 XIYI X2¥3 XA¥3 xuyi } -B=~B+1 Result: multiplying 2's complement operands
+)
takes just about same amount of hardware as

+ 1

1 1 1 1 multiplying unsigned operands!

Figure 18.

With a two’s complement multiplier and multiplicand, the high-order bit of each has negative weight.
So when adding together the partial products, we’ll need to sign-extend each of the N-bit partial
products to the full N+M-bit width of the addition. This will ensure that a negative partial product is
properly treated when doing the addition. And, of course, since the high-order bit of the multiplier has
a negative weight, we’d subtract instead of add the last partial product.

Now for the clever bit. We’ll add 1’s to various of the columns and then subtract them later, with the goal
of eliminating all the extra additions caused by the sign-extension. We’ll also rewrite the subtraction of
the last partial product as first complementing the partial product and then adding 1. This is all a bit
mysterious but...

Here in step 3 we see the effect of all the step 2 machinations. Let’s look at the high order bit of the first
partial product X3YO. If that partial product is non-negative, X3Y0 is a 0, so all the sign-extension bits
are 0 and can be removed. The effect of adding a 1 in that position is to simply complement X3YO0.

On the other hand, if that partial product is negative, X3YO0 is 1, and all the sign-extension bits are
1. Now when we add a 1 in that position, we complement the X3YO0 bit back to 0, but we also get a
carry-out. When that’s added to the first sign-extension bit (which is itself a 1), we get zero with another
carry-out. And so on, with all the sign-extension bits eventually getting flipped to 0 as the carry ripples
to the end. Again the net effect of adding a 1 in that position is to simply complement X3YO0.

We do the same for all the other sign-extended partial products, leaving us with the results shown

here.

20

Computation Structures - Lecture 8

In the final step we do a bit of arithmetic on the remaining constants to end up with this table of work
to be done. Somewhat to our surprise, this isn’t much different than the original table for the unsigned
multiplication. There are a few partial product bits that need to be complemented, and two 1-bits that
need to be added to particular columns.

2’s Complement Multiplier

2’s Complement Multiplier

) a | | 3)

e
oL
b
Dl

HA " FA FA FA HA
v 3
z Z,

°|
A 2 b

O

FA

a

FA
ag
L2

Figure 19.

The resulting circuitry is shown here. We’ve changed some of the AND gates to NAND gates to perform
the necessary complements. And we’ve changed the logic necessary to deal with the two 1-bits that
needed to be added in.

The colored elements show the changes made from the original unsigned multiplier circuitry. Basically,
the circuit for multiplying two’s complement operands has the same latency, throughput and hardware
costs as the original circuitry.

21

Computation Structures - Lecture 8

Increase Throughput with Pipelining

Increase Throughput With Pipelining

gotta break |

ST g%\%

that long
carry chain!)) ?) B b,
& & & [|&
4‘ HA H FA ‘—{ FA H HA ‘

Before pipelining: Throughput = ~1/(2N) = ©(1/N)
After pipelining: Throughput = ~1/N = ®(1/N)

Figure 20.

Let’s see if we can improve the throughput of the original combinational multiplier design. We’ll use
our patented pipelining process to divide the processing into stages with the expectation of achieving
a smaller clock period and higher throughput. The number to beat is approximately 1 output every 2N,
where N is the number of bits in each of the operands.

Our first step is to draw a contour across all the outputs. This creates a 1-pipeline, which gets us started
but doesn’t improve the throughput.

Let’s add another contour, dividing the computations about in half. If we’re on the right track, we hope
to see some improvement in the throughput. And indeed we do: the throughput has doubled. Yet both
the before and after throughputs are ©(1/N). Is there any hope of a dramatically better throughput?

The necessary insight is that as long as an entire row is inside a single pipeline stage, the latency of the
stage will be ©(V) since we have to leave time for the N-bit ripple-carry add to complete.

22

Computation Structures - Lecture 8

Carry-Save Pipelined Multiplier

“Carry-save” Pipelined Multlpller

Observation: Rather
than propagating the
carries to the next
column, they can
instead be forwarded
onto the next column %

by
of the following row E /_h»//_hj/_b/
FA FA

Latency = ©(N)
Throughput = ©(1)
Hardware = ©(N?)

2 25 zy z 2 2 7 N

Figure 21.

There are several ways to tackle this problem. The technique illustrated here will be useful in our next
task. In this schematic we’ve redrawn the carry chains. Carry-outs are still connected to a module
one column to the left, but, in this case, a module that’s down a row. So all the additions that need to
happen in a specific column still happen in that column, we’ve just reorganized which row does the
adding.

Let’s pipeline this revised diagram, creating stages with approximately two modules’ worth of propa-
gation delay.

The horizontal contours now break the long carry chains and the latency of each stage is now constant,
independent of N.

Note that we had to add © (V) extra rows to take care of propagating the carries all the way to the end
- the extra circuitry is shown in the grey box.

To achieve a latency that’s independent of N in each stage, we’ll need © (V) contours. This means the
latency is constant, which in order-of notation we write as ©(1). But this means the clock period is
now independent of N, as is the throughput - they are both ©(1). With ©(V) contours, there are ©(N)
pipeline stages, so the system latency is ©(N). The hardware cost is still ©(/N?). So the pipelined
carry-save multiplier has dramatically better throughput than the original circuit, another design
tradeoff we can remember for future use.

We’ll use the carry-save technique in our next optimization, which is to implement the multiplier using
only ©(N) hardware.

23

Computation Structures - Lecture 8

Reduce Area with Sequential Logic

Reduce Area With Sequential Logic

Assume the multiplicand (A) has N bits and the multiplier
(B) has M bits. If we only want to invest in a single N-bit
adder, we can build a sequential circuit that processes a
single partial product at a time and then cycle the circuit M
times:

Init: P«0, load A&B
LSB

. Repeat M times {
l—'l NC
- B e A | P e P+ (Bgg==1? A :0)
shift Sy,P,B right one bit

Done: (N+M)-bit result in P,B

~N+1 Sum bits and Latency = ©(N)
N saved carries Throughput = @(1/N)
Hardware = ®@(N)

Tep = ©(1) for carry-save (see previous slide),
but adds ©(N) cycles & O(N) hardware

Figure 22.

This sequential multiplier design computes a single partial product in each step and adds it to the
accumulating sum. It will take ©(NV) steps to perform the complete multiplication.

In each step, the next bit of the multiplier, found in the low-order bit of the B register, is ANDed with the
multiplicand to form the next partial product. This is sent to the N-bit carry-save adder to be added to
the accumulating sum in the P register. The value in the P register and the output of the adder are in
“carry-save format”. This means there are 32 data bits, but, in addition, 31 saved carries, to be added to
the appropriate column in the next cycle. The output of the carry-save adder is saved in the P register,
then in preparation for the next step both P and B are shifted right by 1 bit. So each cycle one bit of the
accumulated sum is retired to the B register since it can no longer be affected by the remaining partial
products. Think of it this way: instead of shifting the partial products left to account for the weight of
the current multiplier bit, we’re shifting the accumulated sum right!

The clock period needed for the sequential logic is quite small, and, more importantly is independent
of N. Since there’s no carry propagation, the latency of the carry-save adder is very small, i.e., only
enough time for the operation of a single full adder module.

After ©(INV) steps, we’ve generated the necessary partial products, but will need to continue for another
©(N) steps to finish propagating the carries through the carry-save adder.

But even at 2N steps, the overall latency of the multiplier is still © (V). And at the end of the 2N steps,
we produce the answer in the P and B registers combined, so the throughput is ©(1/N). The big
change is in the hardware cost at ©(N), a dramatic improvement over the ©(IN?) hardware cost of the
original combinational multiplier.

24

Computation Structures - Lecture 8

This completes our little foray into multiplier designs. We’ve seen that with a little cleverness we can
create designs with O(1) throughput, or designs with only ©(N') hardware. The technique of carry-save
addition is useful in many situations and its use can improve throughput at constant hardware cost, or
save hardware at a constant throughput.

Summary

Summary

+ Power dissipation can be controlled by dynamically
varying Tk, Vpp or by selectively eliminating
unnecessary transitions.

* Functions with N inputs have minimum latency of
O(log N) if output depends on all the inputs. But it
can take some doing to find an implementation
that achieves this bound.

+ Performing operations in “slices” is a good way to
reduce hardware costs (but latency increases)

* Pipelining can increase throughput (but latency
increases)

+ Asymptotic analysis only gets you so far — factors of
10 matter in real life and typically N isn't a
parameter that’s changing within a given design.

Figure 23.

This discussion of design tradeoffs completes Part 1 of the course. We’ve covered a lot of ground in the
last eight lectures.

We started by looking at the mathematics underlying information theory and used it to help evaluate
various alternative ways of effectively using sequences of bits to encode information content. Then we
turned our attention to adding carefully-chosen redundancies to our encoding to ensure that we could
detect and even correct errors that corrupted our bit-level encodings.

Next we learned how analog signaling accumulates errors as we added processing elements to our
system. We solved the problem by using voltages “digitally” choosing two ranges of voltages to encode
the bit values 0 and 1. We had different signaling specifications for outputs and inputs, adding noise
margins to make our signaling more robust. Then we developed the static discipline for combinational
devices and were led to the conclusion that our devices had to be non-linear and exhibit gains > 1.

In our study of combinational logic, we fist learned about the MOSFET, a voltage-controlled switch. We
developed a technique for using MOSFETSs to build CMOS combinational logic gates, which met all the
criteria of the static discipline. Then we discussed systematic ways of synthesizing larger combinational
circuits that could implement any functionality we could express in the form of a truth table.

25

Computation Structures - Lecture 8

To be able to perform sequences of operations, we first developed a reliable bistable storage element
based on a positive feedback loop. To ensure the storage elements worked correctly we imposed the
dynamic discipline which required inputs to the storage elements to be stable just before and after the
time the storage element was transitioned to “memory mode”. We introduced finite-state machines
as a useful abstraction for designing sequential logic. And then we figured out how to deal with
asynchronous inputs in way that minimized the chance of incorrect operation due to metastability.

In the last two lectures we developed latency and throughput as performance measures for digital sys-
tems and discussed ways of achieving maximum throughput under various constraints. We discussed
how it’s possible to make tradeoffs to achieve goals of minimizing power dissipation and increasing
performance through decreased latency or increased throughput.

Whew! That’s a lot of information in a short amount of time.

26

	Course Contents
	Optimizing Your Design
	CMOS Static Power Dissipation
	CMOS Dynamic Power Dissipation I
	CMOS Dynamic Power Dissipation II
	How Can We Reduce Power?
	Fewer Transitions → Lower Power
	Improving Speed: Adder Example
	Performance/Cost Analysis
	Carry-Select Adders
	32-Bit Carry-Select Adder
	Wanted: Faster Carry Logic!
	Carry Look-Ahead Adders (CLA)
	8-Bit CLA (generate G & P)
	8-Bit CLA (carry generation)
	8-Bit CLA (complete)
	Binary Multiplication
	Combinational Multiplier
	2’s Complement Multiplication
	2’s Complement Multiplier
	Increase Throughput with Pipelining
	Carry-Save Pipelined Multiplier
	Reduce Area with Sequential Logic
	Summary

