
Computation Structures - Lecture 6

Finite State Machines



Computation Structures - Lecture 6

About

This document is part of the "Computation Structures" course, available at https://PersonalComput
e.net/resources/computation-structures.

The objective of this course is to provide a solid foundation on the inner workings of computers, and
how to use them efficiently. Practically, it tries to answer the question "Why is my computer working
like this?" (where "like this" can mean "slow", "fast", "efficient" or "intermittently freezing").

Its intended audience is first and second-year university students, so its prerequisites are high-school
levels of understanding for math and physics, and a beginner-level understanding of programming. It
is also very useful to anyone whose job involves programming, but hasn’t taken a formal course in
Computer Architectures - a topic that is often overlooked in software or math-oriented degrees.

The Course Contents chapters use the materials from the original course (the MIT OpenCourseWare
release), with very small changes (mostly cosmetic in nature).

Where existing, the Real World Implications chapters provide some additional context and explana-
tions, not present in the MIT OpenCourseWare edition.

If you wish to download the "source code" for the course, go to https://github.com/PersonalCompute-
net/computation-structures/.

Credits

Computation Structures (6.004), Spring 2017 - Original course content, from MIT OpenCourseWare.
Course led by Chris Terman, at MIT.
Originally published at https://ocw.mit.edu/6-004S17 and https://github.com/computation-
structures/course/.
Licensed under Creative Commons BY-NC-SA 4.0 - https://ocw.mit.edu/terms.

Eisvogel - LaTeX template and cover artwork.
Created by Pascal Wagler - https://github.com/Wandmalfarbe/.
Originally published at https://github.com/Wandmalfarbe/pandoc-latex-template/.
Licensed under BSD 3-clause license.

Licensing

This work is licensed under a Creative Commons “Attribution-
NonCommercial-ShareAlike 4.0 International” license.

URL: https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en

1

https://PersonalCompute.net/resources/computation-structures
https://PersonalCompute.net/resources/computation-structures
https://github.com/PersonalCompute-net/computation-structures/
https://github.com/PersonalCompute-net/computation-structures/
https://ocw.mit.edu/6-004S17
https://github.com/computation-structures/course/
https://github.com/computation-structures/course/
https://ocw.mit.edu/terms
https://github.com/Wandmalfarbe/
https://github.com/Wandmalfarbe/pandoc-latex-template/
https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en
https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en
https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en


Computation Structures - Lecture 6

Course Contents

Our New Machine

Figure 1.

In the last chapter we developed sequential logic, which contains both combinational logic and memory
components.

The combinational logic cloud is an acyclic graph of components that obeys the static discipline. The
static discipline guarantees if we supply valid and stable digital inputs, then we will get valid and
stable digital outputs by some specified interval after the last input transition. There’s also a functional
specification that tells us the output values for every possible combination of input values. In this
diagram, there are k + m inputs and k + n outputs, so the truth table for the combinational logic will
have 2k+m rows and k + n output columns.

The job of the state registers is to remember the current state of the sequential logic. The state is
encoded as some number k of bits, which will allow us to represent 2k unique states. Recall that
the state is used to capture, in some appropriate way, the relevant history of the input sequence. To
the extent that previous input values influence the operation of the sequential logic, that happens
through the stored state bits. Typically the LOAD input of the state registers is triggered by the rising
edge of a periodic clock signal, which updates the stored state with the new state calculated by the
combinational logic.

As designers we have several tasks: first we must decide what output sequences need to be generated
in response to the expected input sequences. A particular input may, in fact, generate a long sequence
of output values. Or the output may remain unchanged while the input sequence is processed, step-

2



Computation Structures - Lecture 6

by-step, where the FSM is remembering the relevant information by updating its internal state. Then
we have to develop the functional specification for the logic so it calculates the correct output and
next state values. Finally, we need to come up with an actual circuit diagram for the sequential logic
system.

All the tasks are pretty interesting, so let’s get started!

A Simple Sequential Circuit

Figure 2.

As an example of a sequential system, let’s make a combination lock. The lock has a 1-bit input signal,
where the user enters the combination as a sequence of bits. There’s one output signal, UNLOCK,
which is 1 if and only if the correct combination has been entered. In this example, we want to assert
UNLOCK, i.e., set UNLOCK to 1, when the last four input values are the sequence 0-1-1-0.

Mr. Blue is asking a good question: how many state bits do we need? Do we have to remember the last
four input bits? In which case, we’d need four state bits. Or can we remember less information and still
do our job? Aha! We don’t need the complete history of the last four inputs, we only need to know if
the most recent entries represent some part of a partially-entered correct combination. In other words
if the input sequence doesn’t represent a correct combination, we don’t need to keep track of exactly
how it’s incorrect, we only need to know that is incorrect.

With that observation in mind, let’s figure out how to represent the desired behavior of our digital
system.

3



Computation Structures - Lecture 6

Abstraction du jour: Finite State Machines

Figure 3.

We can characterize the behavior of a sequential system using a new abstraction called a finite state
machine, or FSM for short. The goal of the FSM abstraction is to describe the input/output behavior of
the sequential logic, independent of its actual implementation.

A finite state machine has a periodic CLOCK input. A rising clock edge will trigger the transition from
the current state to the next state. The FSM has a some fixed number of states, with a particular
state designated as the initial or starting state when the FSM is first turned on. One of the interesting
challenges in designing an FSM is to determine the required number of states since there’s often a
tradeoff between the number of state bits and the complexity of the internal combinational logic
required to compute the next state and outputs.

There are some number of inputs, used to convey all the external information necessary for the FSM to
do its job. Again, there are interesting design tradeoffs. Suppose the FSM required 100 bits of input.
Should we have 100 inputs and deliver the information all at once? Or should we have a single input and
deliver the information as a 100-cycle sequence? In many real world situations where the sequential
logic is much faster than whatever physical process we’re trying to control, we’ll often see the use
of bit-serial inputs where the information arrives as a sequence, one bit at a time. That will allow
us to use much less signaling hardware, at the cost of the time required to transmit the information
sequentially.

The FSM has some number outputs to convey the results of the sequential logic’s computations. The
comments before about serial vs. parallel inputs apply equally to choosing how information should be
encoded on the outputs.

4



Computation Structures - Lecture 6

There are a set of transition rules, specifying how the next state S-prime is determined from the current
state S and the inputs I. The specification must be complete, enumerating S-prime for every possible
combination of S and I.

And, finally, there’s the specification for how the output values should be determined. The FSM design
is often a bit simpler if the outputs are strictly a function of the current state S, but, in general, the
outputs can be a function of both S and the current inputs.

Now that we have our abstraction in place, let’s see how to use it to design our combinational lock.

State Transition Diagram

Figure 4.

We’ll describe the operation of the FSM for our combination lock using a state transition diagram.
Initially, the FSM has received no bits of the combination, a state we’ll call SX. In the state transition
diagram, states are represented as circles, each labeled for now with a symbolic name chosen to
remind us of what history it represents. For this FSM, the unlock output U will be a function of the
current state, so we’ll indicate the value of U inside the circle. Since in state SX we know nothing about
past input bits, the lock should stay locked and so U = 0. We’ll indicate the initial state with a wide
border on the circle.

We’ll use the successive states to remember what we’ve seen so far of the input combination. So if
the FSM is in state SX and it receives a 0 input, it should transition to state S0 to remind us that we’ve
seen the first bit of the combination of 0-1-1-0. We use arrows to indicate transitions between states
and each arrow has a label telling us when that transition should occur. So this particular arrow is

5



Computation Structures - Lecture 6

telling us that when the FSM is in state SX and the next input is a 0, the FSM should transition to state
S0. Transitions are triggered by the rising edge of the FSM’s clock input.

Let’s add the states for the remainder of the specified combination. The rightmost state, S0110,
represents the point at which the FSM has detected the specified sequence of inputs, so the unlock
signal is 1 in this state. Looking at the state transition diagram, we see that if the FSM starts in state SX,
the input sequence 0-1-1-0 will leave the FSM in state S0110.

So far, so good. What should the FSM do if an input bit is not the next bit in the combination? For
example, if the FSM is in state SX and the input bit is a 1, it still has not received any correct combination
bits, so the next state is SX again. Here are the appropriate non-combination transitions for the other
states. Note that an incorrect combination entry doesn’t necessarily take the FSM to state SX. For
example, if the FSM is in state S0110, the last four input bits have been 0-1-1-0. If the next input is a
1, then the last four inputs bits are now 1-1-0-1, which won’t lead to an open lock. But the last two
bits might be the first two bits of a valid combination sequence and so the FSM transitions to S01,
indicating that a sequence of 0-1 has been entered over the last two bits.

Valid State Diagrams

Figure 5.

We’ve been working with an FSM where the outputs are function of the current state, called a Moore
machine. Here the outputs are written inside the state circle.

If the outputs are a function of both the current state and the current inputs, it’s called a Mealy machine.
Since the transitions are also a function of the current state and current inputs, we’ll label each
transition with appropriate output values using a slash to separate input values from output values.

6



Computation Structures - Lecture 6

So, looking at the state transition diagram on the right, suppose the FSM is in state S3. If the input is a
0, look for the arrow leaving S3 labeled “0/”. The value after the slash tells us the output value, in this
case 1. If the input had been a 1, the output value would be 0.

There are some simple rules we can use to check that a state transition diagram is well formed. The
transitions from a particular state must be mutually exclusive, i.e., for each state, there can’t be more
than one transition with the same input label. This makes sense: if the FSM is to operate consistently
there can’t be any ambiguity about the next state for a given current state and input. By “consistently”
we mean that the FSM should make the same transitions if it’s restarted at the same starting state and
given the same input sequences.

Moreover, the transitions leaving each state should be collectively exhaustive, i.e., there should a
transition specified for each possible input value. If we wish the FSM to stay in its current state for that
particular input value, we need to show a transition from the current state back to itself.

With these rules there will be exactly one transition selected for every combination of current state
and input value.

State Transition Diagram as a Truth Table

Figure 6.

All the information in a state transition diagram can be represented in tabular form as a truth table. The
rows of the truth table list all the possible combinations of current state and inputs. And the output
columns of the truth table tell us the next state and output value associated with each row.

If we substitute binary values for the symbolic state names, we end up with a truth table just like the
ones we saw in Chapter 4. If we have K states in our state transition diagram we’ll need log2 K state

7



Computation Structures - Lecture 6

bits, rounded up to the next integer since we don’t have fractional bits! In our example, we have a
5-state FSM, so we’ll need 3 state bits.

We can assign the state encodings in any convenient way, e.g., 000 for the first state, 001 for the
second state, and so on. But the choice of state encodings can have a big effect on the logic needed to
implement the truth table. It’s actually fun to figure out the state encoding that produces the simplest
possible logic.

With a truth table in hand, we can use the techniques from Chapter 4 to design logic circuits that
implement the combinational logic for the FSM. Of course, we can take the easy way out and simply
use a read-only memory to do the job!

Now Put It in Hardware

Figure 7.

In this circuit, a read-only memory is used to compute the next state and outputs from the current state
and inputs. We’re encoding the 5 states of the FSM using a 3-bit binary value, so we have a 3-bit state
register. The rectangle with the edge-triggered input is schematic shorthand for a multi-bit register. If a
wire in the diagram represents a multi-bit signal, we use a little slash across the wire with a number to
indicate how many bits are in the signal. In this example, both current_state and next_state are 3-bit
signals.

The read-only memory has a total of 4 input signals – 3 for the current state and 1 for the input value –
so the read-only memory has 24 = 16 locations, which correspond to the 16 rows in the truth table.
Each location in the ROM supplies the output values for a particular row of the truth table. Since we
have 4 output signals – 3 for the next state and 1 for the output value – each location supplies 4 bits of

8



Computation Structures - Lecture 6

information. Memories are often annotated with their number of locations and the number of bits in
each location. So our memory is a 16-by-4 ROM: 16 locations of 4 bits each.

Of course, in order for the state registers to work correctly, we need to ensure that the dynamic discipline
is obeyed. We can use the timing analysis techniques described at the end of Chapter 5 to check that
this is so. For now, we’ll assume that the timing of transitions on the inputs is properly synchronized
with the rising edges of the clock.

Discrete State, Discrete Time

Figure 8.

So now we have the FSM abstraction to use when designing the functionality of a sequential logic
system, and a general-purpose circuit implementation of the FSM using a ROM and a multi-bit state
register. Recapping our design choices: the output bits can be strictly a function of the current state
(the FSM would then be called a Moore machine), or they can be a function of both the current state
and current inputs, in which case the FSM is called a Mealy machine. We can choose the number of
state bits – S state bits will give us the ability to encode 2S possible states. Note that each extra state
bit DOUBLES the number of locations in the ROM! So when using ROMs to implement the necessary
logic, we’re very interested in minimizing the number of state bits.

The waveforms for our circuitry are pretty straightforward. The rising edge of the clock triggers a
transition in the state register outputs. The ROM then does its thing, calculating the next state, which
becomes valid at some point in the clock cycle. This is the value that gets loaded into the state registers
at the next rising clock edge. This process repeats over and over as the FSM follows the state transitions
dictated by the state transition diagram.

9



Computation Structures - Lecture 6

Housekeeping Issues.. .

Figure 9.

There are a few housekeeping details that need our attention.

On start-up we need some way to set the initial contents of the state register to the correct encoding
for the initial state. Many designs use a RESET signal that’s set to 1 to force some initial state and then
set to 0 to start execution. We could adopt that approach here, using the RESET signal to select an
initial value to be loaded into the state register.

In our example, we used a 3-bit state encoding which would allow us to implement an FSM with up
to 23 = 8 states. We’re only using 5 of these encodings, which means there are locations in the ROM
we’ll never access. If that’s a concern, we can always use logic gates to implement the necessary
combinational logic instead of ROMs. Suppose the state register somehow got loaded with one of the
unused encodings? Well, that would be like being in a state that’s not listed in our state transition
diagram. One way to defend against this problem is design the ROM contents so that unused states
always point to the initial state. In theory the problem should never arise, but with this fix at least it
won’t lead to unknown behavior.

We mentioned earlier the interesting problem of finding a state encoding that minimized the combi-
national logic. There are computer-aided design tools to help do this as part of the larger problem of
finding minimal logic implementations for Boolean functions. Mr. Blue is showing us another approach
to building the state register for the combination lock: use a shift register to capture the last four input
bits, then simply look at the recorded history to determine if it matches the combinations. No fancy
next state logic here!

Finally, we still have to address the problem of ensuring that input transitions don’t violate the dynamic

10



Computation Structures - Lecture 6

discipline for the state register. We’ll get to this in the last section of this chapter.

FSM States

Figure 10.

Let’s think a bit more about the FSM abstraction.

If we see an FSM that uses K state bits, what can we say about the number of states in its state transition
diagram? Well, we know the FSM can have at most 2K states, since that’s the number of unique
combinations of K bits.

Suppose we connect two FSMs in series, with the outputs of the first FSM serving as the inputs to the
second. This larger system is also an FSM – how many states does it have? Well, if we don’t know the
details of either of the component FSMs, the upper bound on the number of states for the larger system
is M*N. This is because it may be possible for the first FSM to be in any of its M states while the second
FSM is any of its N states. Note that the answer doesn’t depend on X or Y, the number of input signals
to each of the component FSMs. Wider inputs just mean that there are longer labels on the transitions
in the state transition diagram, but don’t tell us anything about the number of internal states.

Finally, here’s a question that’s a bit trickier than it seems. I give you an FSM with two inputs labeled 0
and 1, and one output implemented as a light. Then I ask you to discover its state transition diagram.
Can you do it? Just to be a bit more concrete, you experiment for an hour pushing the buttons in
a variety of sequences. Each time you push the 0 button the light turns off if it was on. And when
you push the 1 button the light turns on if it was off, otherwise nothing seems to happen. What state
transition diagram could we draw based on our experiments?

11



Computation Structures - Lecture 6

What’s My Transition Diagram?

Figure 11.

Consider the following two state transition diagrams. The top diagram describes the behavior we
observed in our experiments: pushing 0 turns the light off, pushing 1 turns the light on.

The second diagram appears to do the same thing unless you happened to push the 1 button 4 times
in a row!

If we don’t have an upper bound on the number of states in the FSM, we can never be sure that we’ve
explored all of its possible behaviors.

But if we do have an upper bound, say, K, on the number of states and we reset the FSM to its initial
state, we can discover its behavior. This is because in a K-state FSM every reachable state can reached in
less than K transitions, starting from the initial state. So if we try all the possible K-step input sequences
one after the other starting each trial at the initial state, we’ll be guaranteed to have visited every state
in the machine.

Our answer is also complicated by the observation that FSMs with different numbers of states may be
equivalent.

12



Computation Structures - Lecture 6

FSM Equivalence

Figure 12.

Here are two FSMs, one with 2 states, one with 5 states. Are they different? Well, not in any practical
sense. Since the FSMs are externally indistinguishable, we can use them interchangeably. We say that
two FSMs are equivalent if and only if every input sequence yields identical output sequences from
both FSMs.

So as engineers, if we have an FSM we would like to find the the simplest (and hence the least expen-
sive) equivalent FSM. We’ll talk about how to find smaller equivalent FSMs in the context of our next
example.

13



Computation Structures - Lecture 6

Let’s Build a RoboAnt

Figure 13.

Surprise! We’ve just been given a robotic ant that has an FSM for its brain. The inputs to the FSM
come from the ant’s two antennae, labeled L and R. An antenna input is 1 if the antenna is touching
something, otherwise it’s 0. The outputs of the FSM control the ant’s motion. We can make it step
forward by setting the F output to 1, and turn left or right by asserting the TL or TR outputs respectively.
If the ant tries to both turn and step forward, the turn happens first. Note that the ant can turn when
its antennae are touching something, but it can’t move forward. We’ve been challenged to design an
ant brain that will let it find its way out of a simple maze like the one shown here.

We remember reading that if the maze doesn’t have any unconnected walls (i.e., no islands), we can
escape using the “right-hand rule” where we put our right hand on the wall and walk so that our hand
stays on the wall.

Let’s try to implement this strategy.

14



Computation Structures - Lecture 6

Lost in Space

Figure 14.

We’ll assume that initially our ant is lost in space. The only sensible strategy to walk forward until
we find a maze wall. So our initial state, labeled LOST, asserts the F output, causing the ant to move
forward until at least one of the antennae touches something, i.e., at least one of the L or R inputs is a
1.

15



Computation Structures - Lecture 6

Bonk!

Figure 15.

So now the ant finds itself in one of these three situations. To implement the right-hand rule, the ant
should turn left (counterclockwise) until it’s antennae have just cleared the wall. To do this, we’ll add a
rotate-counterclockwise state, which asserts the turn-left output until both L and R are 0.

A Little to the Right.. .

Figure 16.

16



Computation Structures - Lecture 6

Now the ant is standing with a wall to its right and we can start the process of following the wall with
its right antenna. So we have the ant step forward and right, assuming that it will immediately touch
the wall again. The WALL1 state asserts both the turn-right and forward outputs, then checks the right
antenna to see what to do next.

Then a Little to the Left...

Figure 17.

If the right antenna does touch, as expected, the ant turns left to free the antenna and then steps
forward. The WALL2 state asserts both the turn-left and forward outputs, then checks the antennae.
If the right antenna is still touching, it needs to continue turning. If the left antenna touches, it’s run
into a corner and needs to reorient itself so the new wall is on its right, the situation we dealt with the
rotate-counterclockwise state. Finally, if both antennae are free, the ant should be in the state of the
previous slide: standing parallel to the wall, so we return the WALL1 state.

Our expectation is that the FSM will alternate between the WALL1 and WALL2 states as the ant moves
along the wall. If it reaches an inside corner, it rotates to put the new wall on its right and keeps going.
What happens when it reaches an outside corner?

17



Computation Structures - Lecture 6

Dealing With Outside Corners

Figure 18.

When the ant is in the WALL1 state, it moves forward and turns right, then checks its right antenna,
expecting the find the wall its traveling along. But if its an outside corner, there’s no wall to touch!
The correct strategy in this case is to keep turning right and stepping forward until the right antenna
touches the wall that’s around the corner. The CORNER state implements this strategy, transitioning to
the WALL2 state when the ant reaches the wall again.

Hey, this might even work!

18



Computation Structures - Lecture 6

Equivalent State Reduction

Figure 19.

Earlier we talked about about finding equivalent FSMs with fewer states. Now we’ll develop an approach
for finding such FSMs by looking for two states that that can be merged into a single state without
changing the behavior of the FSM in any externally distinguishable manner.

Two states are equivalent if they meet the following two criteria. First, the states must have identical
outputs. This makes sense: the outputs are visible to the outside, so if their values differed between
the two states, that difference would clearly be externally distinguishable!

Second, for each combination of input values, the two states transition to equivalent states.

Our strategy for deriving an equivalent machine with fewer states will be to start with our original FSM,
find pairs of equivalent states and merge those states. We’ll keep repeating the process until we can’t
find any more equivalent states.

Let’s try this on our ant FSM. First we need to find a pair of states that have the same outputs. As it
turns out, there’s only one such pair: WALL1 and CORNER, both of which assert the turn-right and
forward outputs.

Okay, so let’s assume that WALL1 and CORNER are equivalent and ask if they transition to equivalent
states for each applicable combination of input values. For these two states, all the transitions depend
only on the value of the R input, so we just have to check two cases. If R is 0, both states transition to
CORNER. If R is 1, both states transition to WALL2.

So both equivalence criteria are satisfied and we can conclude that the WALL1 and CORNER states are
equivalent and can be merged.

19



Computation Structures - Lecture 6

An Evolutionary Step

Figure 20.

This gives us the four-state FSM shown here, where we’ve called the single merged state WALL1. This
smaller, equivalent FSM behaves exactly as the previous 5-state FSM. The implementation of the 5-state
machine requires 3 state bits; the implementation of the 4-state machine only requires 2 state bits.
Reducing the number of state bits by 1 is huge since it reduces the size of the required ROM by half!

Just as we were able to achieve considerable hardware savings by minimizing Boolean equations, we
can do the same in sequential logic by merging equivalent states.

RoboAnt customers are looking forward to the price cut!

20



Computation Structures - Lecture 6

Building the Transition Table

Figure 21.

Let’s look at what we’d need to do if we wanted to implement the FSM using logic gates instead a ROM
for the combinational logic. First we have to build the truth table, entering all the transitions in the
state transition diagram. We’ll start with the LOST state. So if the FSM is in this state, the F output
should be 1. If both antenna inputs are 0, the next state is also LOST. Assigning the LOST state the
encoding 00, we’ve captured this information in the first row of the table.

If either antenna is touching, the FSM should transition from LOST to the rotate-counterclockwise state.
We’ve given this an encoding of 01. There are three combinations of L and R values that match this
transition, so we’ve added three rows to the truth table. This takes care of all the transitions from the
LOST state.

Now we can tackle the transitions from the rotate-counterclockwise state. If either antenna is touching,
the next state is again rotate-counterclockwise. So we’ve identified the matching values for the inputs
and added the appropriate three rows to the transition table.

We can continue in a similar manner to encode the transitions one by one.

21



Computation Structures - Lecture 6

Implementation Details

Figure 22.

Here’s the final table, where we’ve used don’t cares to reduce the number of rows for presentation.
Next we want to come up with Boolean equations for each of the outputs of the combinational logic,
i.e., the two next-state bits and the three motion-control outputs.

Here are the Karnaugh maps for the two next-state bits. Using our K-map skills from Chapter 4, we’ll
find a cover of the prime implicants for S1-prime and write down the corresponding product terms in a
minimal sum-of-products equation. And then do the same for the other next-state bit.

We can follow a similar process to derive minimal sum-of-products expressions for the motion-control
outputs.

22



Computation Structures - Lecture 6

Ant Schematic

Figure 23.

Implementing each sum-of-products in a straightforward fashion with AND and OR gates, we get the
following schematic for the ant brain. Pretty neat! Who knew that maze following behavior could be
implemented with a couple of D registers and a handful of logic gates?

FSMs All the Way Down?

Figure 24.

23



Computation Structures - Lecture 6

There are many complex behaviors that can be created with surprisingly simple FSMs. Early on, the
computer graphics folks learned that group behaviors like swarming, flocking and schooling can be
modeled by equipping each participant with a simple FSM. So next time you see the massive battle
scene from the Lord of the Rings movie, think of many FSMs running in parallel!

Physical behaviors that arise from simple interactions between component molecules can sometimes
be more easily modeled using cellular automata – arrays of communicating FSMS – than by trying to
solve the partial differential equations that model the constraints on the molecules’ behavior.

And here’s an idea: what if we allowed the FSM to modify its own transition table? Hmm. Maybe that’s
a plausible model for evolution!

FSMs are everywhere! You’ll see FSMs for the rest of your life. . .

The World Doesn’t Run on Our Clock!

Figure 25.

Okay, it’s finally time to investigate issues caused by asynchronous inputs to a sequential logic circuit.
By “asynchronous” we mean that the timing of transitions on the input is completely independent of
the timing of the sequential logic clock. This situation arises when the inputs arrive from the outside
world where the timing of events is not under our control.

As we saw at the end of Lecture 5, to ensure reliable operation of the state registers, inputs to a
sequential logic system have to obey setup and hold-time constraints relative to the rising edge of the
system clock. Clearly if the input can change at anytime, it can change at time that would violate the
setup and hold times.

24



Computation Structures - Lecture 6

Maybe we can come up with a synchronizer circuit that takes an unsynchronized input signal and
produces a synchronized signal that only changes shortly after the rising edge of the clock. We’d use a
synchronizer on each asynchronous input and solve our timing problems that way.

The Bounded-Time Synchronizer

Figure 26.

Here’s a detailed specification for our synchronizer.

The synchronizer has two inputs, IN and CLK, which have transitions at time tIN and tC respectively.

If IN’s transition happens sufficiently before C’s transition, we want the synchronizer to output a 1
within some bounded time tD after CLK’s transition.

And if CLK’s transition happens sufficiently before IN’s transition, we want the synchronizer to output a
0 within time tD after CLK’s transition.

Finally, if the two transitions are closer together than some specified interval tE, the synchronizer can
output either a 0 or a 1 within time tD of CLK’s transition. Either answer is fine so long as it’s a stable
digital 0 or digital 1 by the specified deadline.

This turns out to be an unsolvable problem! For no finite values of tE and tD can we build a synchronizer
that’s guaranteed to meet this specification even when using components that are 100% reliable.

25



Computation Structures - Lecture 6

Unsolvable? That Can’t Be True...

Figure 27.

But can’t we just use a D register to solve the problem? We’ll connect IN to the register’s data input and
connect CLK to the register’s clock input. We’ll set the decision time tD to the propagation delay of the
register and the allowable error interval to the larger of the register’s setup and hold times.

Our theory is that if the rising edge of IN occurs at least tSETUP before the rising edge of CLK, the
register is guaranteed to output a 1. And if IN transitions more than tHOLD after the rising edge of CLK,
the register is guaranteed to output a 0. So far, so good. If IN transitions during the setup and hold
times with respect to the rising edge on CLK, we know we’ve violated the dynamic discipline and we
can’t tell whether the register will store a 0 or a 1. But in this case, our specification lets us produce
either answer, so we’re good to go, right?

Sadly, we’re not good to go. We’re lured by the digital abstraction into assuming that even if we violate
the dynamic discipline that Q must be either 1 or 0 after the propagation delay. But that isn’t a valid
assumption as we’ll see when we look more carefully at the operation of the register’s master latch
when B and C change at about the same time.

26



Computation Structures - Lecture 6

The Mysterious Metastable State

Figure 28.

Recall that the master latch is really just a lenient MUX that can be configured as a bi-stable storage
element using a positive feedback loop. When the latch is in memory mode, it’s essentially a two-gate
cyclic circuit whose behavior has two constraints: the voltage transfer characteristic of the two-gate
circuit, shown in green on the graph, and that VIN equals tOUT, a constraint that’s shown in red on the
graph.

These two curves intersect at three points. Our concern is the middle point of intersection. If IN and
CLK change at the same time, the voltage on Q may be in transition at the time the MUX closes and
enables the positive feedback loop. So the initial voltage in the feedback loop may happen to be at or
very near the voltage of the middle intersection point.

When Q is at the metastable voltage, the storage loop is in an unstable equilibrium called the metastable
state. In theory the system could balance at this point forever, but a small change in the voltages in the
loop will move the system away from the metastable equilibrium point and set it irrevocably in motion
towards the stable equilibrium points. Here’s the issue we face: we can’t bound the amount of time
the system will spend in the metastable state.

27



Computation Structures - Lecture 6

Metastable State: Properties

Figure 29.

Here’s what we know about the metastable state.

It’s in the forbidden zone of the digital signaling specifications and so corresponds to an invalid logic
level. Violating the dynamic discipline means that our register is no longer guaranteed to produce a
digital output in bounded time.

A persistent invalid logic level can wreak both logical and electrical havoc in our sequential logic circuit.
Since combinational logic gates with invalid inputs have unpredictable outputs, an invalid signal may
corrupt the state and output values in our sequential system.

At the electrical level, if an input to a CMOS gate is at the metastable voltage, both PFET and NFET
switches controlled by that input would be conducting, so we’d have a path between VDD and GND,
causing a spike in the system’s power dissipation.

It’s an unstable equilibrium and will eventually be resolved by a transition to one of the two stable
equilibrium points. You can see from the graph that the metastable voltage is in the high-gain region of
the VTC, so a small change in VIN results in a large change in tOUT, and once away from the metastable
point the loop voltage will move towards 0 or VDD.

The time it takes for the system to evolve to a stable equilibrium is related to how close Q’s voltage was
to the metastable point when the positive feedback loop was enabled. The closer Q’s initial voltage is
to the metastable voltage, the longer it will take for the system to resolve the metastability. But since
there’s no lower bound on how close Q is to the metastable voltage, there’s no upper bound on the
time it will take for resolution. In other words, if you specify a bound, e.g., tD, on the time available for
resolution, there’s a range of initial Q voltages that won’t be resolved within that time.

28



Computation Structures - Lecture 6

If the system goes metastable at some point in time, then there’s a non-zero probability that the system
will still be metastable after some interval T, for any finite choice of T.

The good news is that the probability of being metastable at the end of the interval decreases expo-
nentially with increasing T.

Note that every bistable system has at least one metastable state. So metastability is the price we pay
for building storage elements from positive feedback loops.

If you’d like to read a more thorough discussion of synchronizers and related problems and learn about
the mathematics behind the exponential probabilities, please see Chapter 10 of the Course Notes.

Solution: Delay Increases Reliability

Figure 30.

Our approach to dealing with asynchronous inputs is to put the potentially metastable value coming
out of our D-register synchronizer into quarantine by adding a second register hooked to the output
of the first register.

If a transition on the input violates the dynamic discipline and causes the first register to go metastable,
it’s not immediately an issue since the metastable value is stopped from entering the system by the
second register. In fact, during the first half of the clock cycle, the master latch in the second register is
closed, so the metastable value is being completely ignored.

It’s only at the next clock edge, an entire clock period later, that the second D register will need a valid
and stable input. There’s still some probability that the first register will be metastable after an entire
clock period, but we can make that probability as low as we wish by choosing a sufficiently long clock

29



Computation Structures - Lecture 6

period. In other words, the output of the second register, which provides the signal used by the internal
combinational logic, will be stable and valid with a probability of our choosing. Validity is not 100%
guaranteed, but the failure times are measured in years or decades, so it’s not an issue in practice.
Without the second register, the system might see a metastability failure every handful of hours – the
exact failure rate depends on the transition frequencies and gains in the circuit.

What happens if our clock period is short but we want a long quarantine time? We can use multiple
quarantine registers in series – it’s the total delay between when the first register goes metastable and
when the synchronized input is used by the internal logic that determines the failure probability.

The bottom line: we can use synchronizing registers to quarantine potentially metastable signals for
some period of time. Since the probability of still being metastable decreases exponentially with the
quarantine time, we can reduce the failure probability to any desired level. Not 100% guaranteed, but
close enough that metastability is not a practical issue if we use our quarantine strategy.

30


	Course Contents
	Our New Machine
	A Simple Sequential Circuit
	Abstraction du jour: Finite State Machines
	State Transition Diagram
	Valid State Diagrams
	State Transition Diagram as a Truth Table
	Now Put It in Hardware
	Discrete State, Discrete Time
	Housekeeping Issues…
	FSM States
	What’s My Transition Diagram?
	FSM Equivalence
	Let’s Build a RoboAnt
	Lost in Space
	Bonk!
	A Little to the Right…
	Then a Little to the Left…
	Dealing With Outside Corners
	Equivalent State Reduction
	An Evolutionary Step
	Building the Transition Table
	Implementation Details
	Ant Schematic
	FSMs All the Way Down?
	The World Doesn’t Run on Our Clock!
	The Bounded-Time Synchronizer
	Unsolvable? That Can’t Be True…
	The Mysterious Metastable State
	Metastable State: Properties
	Solution: Delay Increases Reliability


