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Course Contents

Something We Can’t Build (Yet)

Something We Can’t Build (Yet)

What if you were given the following design specification:

@ #1
When the button is pushed:
1) Turn the light on if it is off
butten 2) Turn the light off if it is on light
0 o#2 The light should change
state within a second
of the button press

What makes this device different
from those we’ve discussed before?

1. “State” —i.e., the device has memory
2. The output was changed by a input
“event” (pushing a button) rather

than an input “level”

Figure 1.

In the last lecture we learned how to build combinational logic circuits given a functional specification
that told us how output values were related to the current values of the inputs.

But here’s a simple device we can’t build with combinational logic. The device has a light that serves
as the output and push button that serves as the input. If the light is off and we push the button, the
light turns on. If the light is on and we push the button, the light turns off.

What makes this circuit different from the combinational circuits we’ve discussed so far? The biggest
difference is that the device’s output is not function of the device’s current input value. The behavior
when the button is pushed depends on what has happened in the past: odd numbered pushes turn
the light on, even numbered pushes turn the light off. The device is “remembering” whether the last
push was an odd push or an even push so it will behave according to the specification when the next
button push comes along. Devices that remember something about the history of their inputs are said
to have state.

The second difference is more subtle. The push of the button marks an event in time: we speak of the
state before the push (“the light is on”) and state after the push (“the light is off”). It’s the transition of
the button from un-pushed to pushed that we’re interested in, not the whether the button is currently
pushed or not.

The device’s internal state is what allows it to produce different outputs even though it receives the
same input. A combinational device can’t exhibit this behavior since its outputs depends only on
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the current values of the input. Let’s see how we’ll incorporate the notion of device state into our
circuitry.

Digital State: What We’d Like to Build

Digital State: What We’d Like to Build

Sequence of values
Next
Trigger /\/ State

periodically Memory Current

\/\ Device State

—| LOAD
Input

Combinational
Logic

Output

Plan: Build a Sequential Circuit with stored digital STATE —
* Memory stores CURRENT state, produced at output

¢ Combinational Logic computes N

b
N

* NEXT state (from input, current state) «

* OUTPUT bits (from input, current state) 4 / —
¢ State changes on LOAD control input /\'/\ \

Figure 2.

We’llintroduce a new abstraction of a memory component that will store the current state of the digital
system we want to build. The memory component stores one or more bits that encode the current
state of the system. These bits are available as digital values on the memory component’s outputs,
shown here as the wire marked “Current State”.

The current state, along with the current input values, are the inputs to a block of combinational logic
that produces two sets of outputs. One set of outputs is the next state of the device, encoded using
the same number of bits as the current state. The other set of outputs are the signals that serve as
the outputs of the digital system. The functional specification for the combinational logic (perhaps a
truth table, or maybe a set of Boolean equations) specifies how the next state and system outputs are
related to the current state and current inputs.

The memory component has two inputs: a LOAD control signal that indicates when to replace the
current state with the next state, and a data input that specifies what the next state should be. Our
plan is to periodically trigger the LOAD control, which will produce a sequence of values for the current
state. Each state in the sequence is determined from the previous state and the inputs at the time the
LOAD was triggered.

Circuits that include both combinational logic and memory components are called sequential logic.
The memory component has a specific capacity measured in bits. If the memory component stores K
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bits, that puts an upper bound of 2% on the number of possible states since the state of the device is
encoded using the K bits of memory.

So, we’ll need to figure out how to build a memory component that can loaded with new values now
and then. That’s the subject of this chapter. We’ll also need a systematic way of designing sequential
logic to achieve the desired sequence of actions. That’s the subject of the next chapter.

Memory: Using Capacitors

Memory: Using Capacitors

We’ve chosen to encode information using voltages and
we know from physics that we can “store” a voltage as
charge on a capacitor:

I . Pros:
f word line _ * compact — low cost/bit
bit line (on BIG memories)
/ Cons:
NFET serves as —l— C * complex interface

» stable? (noise, ...)

access switch VR8er :
» it leaks! = refresh
To write:
Drive bit line, turn on access fet, \\d/ Suppose we use
force storage cap to new voltage feedback to
refresh
To read: Lo continuously?
precharge bit line, turn on access fet,
detect (small) change in bit line voltage

Figure 3.

We’ve been representing bits as voltages, so we might consider using a capacitor to store a partic-
ular voltage. The capacitor is passive two-terminal device. The terminals are connected to parallel
conducting plates separated by insulator. Adding charge @ to one plate of the capacitor generates a
voltage difference V between the two plate terminals. @ and V are related by the capacitance C of
the capacitor.

Q=Cv

When we add charge to a capacitor by hooking a plate terminal to higher voltage, that’s called “charging
the capacitor”. And when we take away charge by connecting the plate terminal to a lower voltage,
that’s called “discharging the capacitor”.

So here’s how a capacitor-based memory device might work. One terminal of the capacitor is hooked
to some stable reference voltage. We’'ll use an NFET switch to connect the other plate of the capacitor
to a wire called the bit line. The gate of the NFET switch is connected to a wire called the word line.
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To write a bit of information into our memory device, drive the bit line to the desired voltage (i.e., a
digital 0 or a digital 1). Then set the word line HIGH, turning on the NFET switch. The capacitor will
then charge or discharge until it has the same voltage as the bit line. At this point, set the word line
LOW, turning off the NFET switch and isolating the capacitor’s charge on the internal plate. In a perfect
world, the charge would remain on the capacitor’s plate indefinitely.

At some later time, to access the stored information, we first charge the bit line to some intermediate
voltage. Then set the word line HIGH, turning on the NFET switch, which connects the charge on the
bit line to the charge on the capacitor. The charge sharing between the bit line and capacitor will have
some small effect on the charge on the bit line and hence its voltage. If the capacitor was storing a
digital 1 and hence was at a higher voltage, charge will flow from the capacitor into the bit line, raising
the voltage of the bit line. If the capacitor was storing a digital 0 and was at lower voltage, charge will
flow from the bit line into the capacitor, lowering the voltage of the bit line. The change in the bit line’s
voltage depends on the ratio of the bit line capacitance to C, the storage capacitor’s capacitance, but is
usually quite small. A very sensitive amplifier, called a sense amp, is used to detect that small change
and produce a legal digital voltage as the value read from the memory cell.

Whew! Reading and writing require a whole sequence of operations, along with carefully designed
analog electronics. The good news is that the individual storage capacitors are quite small - in modern
integrated circuits we can fit billions of bits of storage on relatively inexpensive chips called dynamic
random-access memories, or DRAMs for short. DRAMs have a very low cost per bit of storage.

The bad news is that the complex sequence of operations required for reading and writing takes a
while, so access times are relatively slow. And we have to worry about carefully maintaining the charge
on the storage capacitor in the face of external electrical noise. The really bad news is that the NFET
switch isn’t perfect and there’s a tiny amount leakage current across the switch even when it’s officially
off. Over time that leakage current can have a noticeable impact on the stored charge, so we have to
periodically refresh the memory by reading and re-writing the stored value before the leakage has
corrupted the stored information. In current technologies, this has to be done every 10ms or so.

Hmm. Maybe we can get around the drawbacks of capacitive storage by designing a circuit that uses
feedback to provide a continual refresh of the stored information...
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Memory: Using Feedback

Memory: Using Feedback

IDEA: use positive feedback to maintain storage indefinitely.
Our logic gates are built to restore marginal signal levels, so
noise shouldn’t be a problem!

Result: a bistable

0] 0] o storage element
V]N VUUT
Not affected
VICfor peedback constraint: by noise
zm}erterpalr Vp\' - VULT
Vour ) :
\. Three solutions:

» two end-points are stable
* middle point is metastable

i

Viy We'll get back to this!

Figure 4.

Here’s a circuit using combinational inverters hooked in a positive feedback loop. If we set the input
of one of the inverters to a digital 0, it will produce a digital 1 on its output. The second inverter will
then a produce a digital 0 on its output, which is connected back around to the original input. Thisis a
stable system and these digital values will be maintained, even in the presence of noise, as long as this
circuitry is connected to power and ground. And, of course, it’s also stable if we flip the digital values
on the two wires. The result is a system that has two stable configurations, called a bi-stable storage
element.

Here’s the voltage transfer characteristic showing how Vot and Vi of the two-inverter system are
related. The effect of connecting the system’s output to its input is shown by the added constraint that
Vin equal Vour. We can then graphically solve for values of Vi and Vour that satisfy both constraints.
There are three possible solutions where the two curves intersect.

The two points of intersection at either end of the VTC are stable in the sense that small changes in
Vin (due, say, to electrical noise), have no effect on Voyr. So the system will return to its stable state
despite small perturbations.

The middle point of intersection is what we call metastable. In theory the system could “balance” at this
particular Vin/Vour voltage forever, but the smallest perturbation will cause the voltages to quickly
transition to one of the stable solutions. Since we’re planing to use this bi-stable storage element as
our memory component, we’ll need to figure out how to avoid getting the system into this metastable
state. More on this in the next chapter.

Now let’s figure out how to load new values into our bi-stable storage element.
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Settable Memory Element

Settable Memory Element

It’s easy to build a settable storage element (called a
latch) using a lenient MUX:

_ Here's a feedback path, “state” signal

~ so it's no longer a
combinational circuit. appears as both
input and output

DO GDQ'lQ

— —Q o-01]o0
D —— D1 0 1 1 Q stable

S ——
G } (1) . ? } Q follows D

D: data input
G: gate input
Q: state output

Figure 5.

We can use a 2-to-1 multiplexer to build a settable storage element. Recall that a MUX selects as its
output value the value of one of its two data inputs. The output of the MUX serves as the state output
of the memory component. Internally to the memory component we’ll also connect the output of
the MUX to its DO data input. The MUX’s D1 data input will become the data input of the memory
component. And the select line of the MUX will become the memory component’s load signal, here
called the gate.

When the gate input is LOW, the MUX’s output is looped back through MUX through the DO data input,
forming the bi-stable positive feedback loop discussed in the last section. Note our circuit now has a
cycle, so it no longer qualifies as a combinational circuit.

When the gate input is HIGH, the MUX’s output is determined by the value of the D1 input, i.e., the data
input of the memory component.

To load new data into the memory component, we set the gate input HIGH for long enough for the Q
output to become valid and stable. Looking at the truth table, we see that when G is 1, the Q output
follows the D input. While the G input is HIGH, any changes in the D input will be reflected as changes
in the Q output, the timing being determined by the ¢pp of the MUX.

Then we can set the gate input LOW to switch the memory component into memory mode, where the
stable Q value is maintained indefinitely by the positive feedback loop as shown in the first two rows
of the truth table.
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New Device: D Latch

New Device: D Latch

G=1: G=0:
Q follows D Q holds
o’
Circuit: —Q D VI X v
G —1 S
Q v X Xl
Schematic b Q }_p; THPD
Symbol:

BUT.. A change in D

=1- . i or G contaminates
G=1: Q Follows D, independently of Q Q. hence Q' . how

this possibl
G=0: Q Holds stable Q’, independently of D ;aar:lk?r posty

Figure 6.

Our memory device is a called a D latch, or just a latch for short, with the schematic symbol shown
here.

When the latch’s gate is HIGH, the latch is open and information flows from the D input to the Q output.
When the latch’s gate is LOW, the latch is closed and in “memory mode”, remembering whatever value
was on the D input when the gate transitioned from HIGH to LOW.

This is shown in the timing diagrams on the right. The waveforms show when a signal is stable, i.e.,
a constant signal that’s either LOW or HIGH, and when a signal is changing, shown as one or more
transitions between LOW and HIGH.

When G is HIGH, we can see Q changing to a new stable output value no later than ¢pp after D reaches
a new stable value.

Our theory is that after G transitions to a LOW value, Q will stay stable at whatever value was on D
when G made the HIGH to LOW transition. But, we know that in general, we can’t assume anything
about the output of a combinational device until tpp after the input transition - the device is allowed
to do whatever it wants in the interval between tcp and tpp after the input transition. But how will our
memory work if the 1-to-0 transition on G causes the Q output to become invalid for a brief interval?
After all it’s the value on the Q output we’re trying to remember! We’re going to have ensure that a
1-to-0 transition on G doesn’t affect the Q output.
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A Plea for Lenience

A Plea for Lenience

Q 1. 2. 3.
: D w1 X V2 X
° G \
1
‘1’ Q Xvi X XTve
Ton o Top

Assume LENIENT Mux,

propagation delay of Tpp .
Does lenience guarantee a

Then output valid when working latch?

1. G=1, D stable for Tpp, )
independently of Q'; or ~ What if D and &6

change at about
2. Q=D stable for Tpp , the game time
independently of G; or

3. G=0, Q stable for Tpp,
independently of D

Figure 7.

That’s why we specified a lenient MUX for our memory component. The truth table for a lenient MUX is
shown here. The output of a lenient MUX remains valid and stable even after an input transition under
any of the following three conditions.

(1) When we’re loading the latch by setting G HIGH, once the D input has been valid and stable for
tpp, we are guaranteed that the Q output will be stable and valid with the same value as the D
input, independently of Q’s initial value.

Or (2) If both Q and D are valid and stable for tpp, the Q output will be unaffected by subsequent
transitions on the G input. This is the situation that will allow us to have a 1-to-0 transition on G without
contaminating the Q output.

Or, finally, (3) if G is LOW and Q has been stable for at least tpp, the output will be unaffected by
subsequent transitions on the D input.

Does lenience guarantee a working latch? Well, only if we’re careful about ensuring that signals are
stable at the right times so we can leverage the lenient behavior of the MUX.
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... With a Little Discipline

...With a Little Discipline

,T D Stable
Q B o D | SRR )¢
D f G W
G e
Q Xva
To reliably latch V2: ToTon o
« Apply V2 to D, holding G=1 - T“
SETUP *HOLD

* After Tpp, V2 appears at Q=Q’
« After another Tpp, Q" & D Dynamic Discipline for our latch:
bo_th valid for Tep; will hold Tserup = 2Tpp: interval prior to G
Q=V2 independently of G transition for which D must
¢ Set G=0, while Q" & D hold Q= be stable & valid

* After another Tpp, G=0 and Trown = Tep: interval following G
Q" are sufficient to hold transition for which D must
Q=V2 independently of D ibre clzisite @ wilie)

Figure 8.

Here are the steps we need to follow in order to ensure the latch will work as we want.

First, while the G input is HIGH, set the D input to the value we wish store in the latch. Then, after tpp,
we’re guaranteed that value will be stable and valid on the Q output. This is condition (1) from the
previous slide.

Now we wait another tpp so that the information about the new value on the Q’ input propagates
through the internal circuitry of the latch. Now, both D and Q’ have been stable for at least tpp, giving
us condition (2) from the previous slide.

So if D is stable for 2 - tpp, transitions on G will not affect the Q output. This requirement on D is called
the setup time of the latch: it’s how long D must be stable and valid before the HIGH-to-LOW transition
of G.

Now we can set G to LOW, still holding D stable and valid. After another tpp to allow the new G value to
propagate through the internal circuitry of the latch, we’ve satisfied condition (3) from the previous
slide, and the Q output will be unaffected by subsequent transitions on D.

This further requirement on D’s stability is called the hold time of the latch: it’s how long after the
transition on G that D must stay stable and valid.

Together the setup and hold time requirements are called the dynamic discipline, which must be
followed if the latch is to operate correctly.

In summary, the dynamic discipline requires that the D input be stable and valid both both before and
after a transition on G. If our circuit is designed to obey the dynamic discipline, we can guarantee that
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this memory component will reliably store the information on D when the gate makes a HIGH-to-LOW
transition.

Let’s Try it Out!

Let’s Try It Out!

( ’ New
> State

D Q
l_l Current
— .G State Fombinational

Logic

Input Output

When G=1, latch is Transparent... )
Looks like a stupid

... provides a combinational path from D to Q. approach to me

Can’t work without tricky timing constraints on G=1
pulse:

* Must fit within contamination delay of logic
* Must accommodate latch setup, hold times
Want to signal an INSTANT, not an INTERVAL...

Figure 9.

Let’s try using the latch as the memory component in our sequential logic system.

To load the encoding of the new state into the latch, we open the latch by setting the latch’s gate input
HIGH, letting the new value propagate to the latch’s Q output, which represents the current state. This
updated value propagates through the combinational logic, updating the new state information. Oops,
if the gate stays HIGH too long, we’ve created a loop in our system and our plan to load the latch with
new state goes awry as the new state value starts to change rapidly as information propagates around
and around the loop.

So to make this work, we need to carefully time the interval when G is HIGH. It has to be long enough
to satisfy the constraints of the dynamic discipline, but it has to be short enough that the latch closes
again before the new state information has a chance to propagate all the way around the loop.

Hmm. I think Mr. Blue is right: this sort of tricky system timing would likely be error-prone since the
exact timing of signals is almost impossible to guarantee. We have upper and lower bounds on the
timing of signal transitions but no guarantees of exact intervals. To make this work, we want to a load
signal that marks an instant in time, not an interval.

11



Computation Structures - Lecture 5

Flakey Control Systems

Flakey Control Systems

ensure
only one
car gets
N\ through?
Sequence

of values

Gate closed Gate open

Figure 10.

Here’s an analogy that will help us understand what’s happening and what we can do about it. Imagine
a line cars waiting at a toll booth gate. The sequence of cars represents the sequence of states in our
sequential logic and the gated toll both represents the latch.

Initially the gate is closed and the cars are waiting patiently to go through the toll booth. When the
gate opens, the first car proceeds out of the toll both. But you can see that the timing of when to close
the gate is going to be tricky. It has to be open long enough for the first car to make it through, but not
too long lest the other cars also make it through. This is exactly the issue we faced with using the latch
as our memory component in our sequential logic.

So how do we ensure only one car makes it through the open gate?

12
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Solution: Escapement Strategy (2 Gates)

Solution: Escapement Strategy (2 gates)

Sequence
of values

Key: at no
Gate 1: open time is there Gate 1: closed
Gate 2: closed a path Gate 2: open

through both
gates

Figure 11.

One solution is to use two gates! Here’s the plan: Initially Gate 1 is open allowing exactly one car to
enter the toll booth and Gate 2 is closed. Then at a particular point in time, we close Gate 1 while
opening Gate 2. This lets the car in the toll booth proceed on, but prevents any other car from passing
through. We can repeat this two-step process to deal with each car one-at-time. The key is that at no
time is there a path through both gates.

This is the same arrangement as the escapement mechanism in a mechanical clock. The escapement
ensures that the gear attached to the clock’s spring only advances one tooth at a time, preventing the
spring from spinning the gear wildly causing a whole day to pass at once!

If we observed the toll booth’s output, we would see a car emerge shortly after the instant in time
when Gate 2 opens. The next car would emerge shortly after the next time Gate 2 opens, and so on.
Cars would proceed through the toll booth at a rate set by the interval between Gate 2 openings.

Let’s apply this solution to design a memory component for our sequential logic.

13
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Edge-triggered D Register

(Edge-Triggered) D Register

The gate of this
latch is open
when the clock
is low
D——D Q—D Q=~Q

master slave

D

B Q S G r G

5 The gate of this
H CLK latch is open

when the clock
is high

Observations:
* only one latch “transparent” at any time:
master closed when slave is open
slave closed when master is open

= no combinational path through register
(the feedback path in one of the master or slave latches is always active)

Figure 12,

Taking our cue from the 2-gate toll both, we’ll design a new component, called a D register, using two
back-to-back latches. The load signal for a D register is typically called the register’s “clock”, but the
register’s D input and Q output play the same roles as they did for the latch.

First we’ll describe the internal structure of the D register, then we’ll describe what it does and look in
detail at how it does it.

The D input is connected to what we call the master latch and the Q output is connected to the slave
latch.

Note that the clock signalis inverted before it’s connected to the gate input of the master latch. So when
the master latch is open, the slave is closed, and vice versa. This achieves the escapement behavior we
saw on the previous slide: at no time is there active path from the register’s D input to the register’s Q
output.

The delay introduced by the inverter on the clock signal might give us cause for concern. When there’s
arising 0-to-1 transition on the clock signal, might there be a brief interval when the gate signal is HIGH
for both latches since there will be a small delay before the inverter’s output transitions from 1 to 0?
Actually the inverter isn’t necessary: Mr Blue is looking at a slightly different latch schematic where the
latch is open when G is LOW and closed when G is high. Just what we need for the master latch!

By the way, you’ll sometimes hear a register called a flip-flop because of the bistable nature of the
positive feedback loops in the latches.

That’s the internal structure of the D register. In the next section we’ll take a step-by-step tour of the

14
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register in operation.

D-Register Waveforms

D-Register Waveforms

W
D Q—D Q—Q D—D Q}>Q
master| slave

EO G r G
CLK:

CLK—

master closed ¥~ ™ master open
slave open slave closed

Figure 13.

We'll get a good understanding of how the register operates as we follow the signals through the
circuit.

The overall operation of the register is simple: At the rising 0-to-1 transition of the clock input, the regis-
ter samples the value of the D input and stores that value until the next rising clock edge. The Q output
is simply the value stored in the register. Let’s see how the register implements this functionality.

The clock signal is connected to the gate inputs of the master and slave latches. Since all the action
happens when the clock makes a transition, it’s those events we’ll focus on. The clock transition from
LOW to HIGH is called the rising edge of the clock. And its transition from HIGH to LOW is called the
falling edge. Let’s start by looking the operation of the master latch and its output signal, which is
labeled STAR in the diagram.

On the rising edge of the clock, the master latch goes from open to closed, sampling the value on its
input and entering memory mode. The sampled value thus becomes the output of the latch as long as
the latch stays closed. You can see that the STAR signal remains stable whenever the clock signal is
high.

On the falling edge of the clock the master latch opens and its output will then reflect any changes in
the D input, delayed by the tpp of the latch.

15
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Now let’s figure out what the slave is doing. It’s output signal, which also serves as the output of D
register, is shown as the bottom waveform. On the rising edge of the clock the slave latch opens and its
output will follow the value of the STAR signal. Remember though that the STAR signal is stable while
the clock is HIGH since the master latch is closed, so the Q signal is also stable after an initial transition
if value saved in the slave latch is changing.

At the falling clock edge, the slave goes from open to closed, sampling the value on its input and
entering memory mode. The sampled value then becomes the output of the slave latch as long as
the latch stays closed. You can see that that the Q output remains stable whenever the clock signal is
LOW.

Now let’s just look at the Q signal by itself for a moment. It only changes when the slave latch opens at
the rising edge of the clock. The rest of the time either the input to slave latch is stable or the slave
latch is closed. The change in the Q output is triggered by the rising edge of the clock, hence the name
“positive-edge-triggered D register”.

The convention for labeling the clock input in the schematic icon for an edge-triggered device is to use

a little triangle. You can see that here in the schematic symbol for the D register.

Um, About That Hold Time...

Um, about that hold time...

D——D QKD Q—Q

master slave

I:(iG TG
CLK-

CLK | l l l
# i

! . The master’s contamination

h delay must meet the hold time
of the slave: tcpy 2 ty s

Slave latch is closing = ¥ must meet setup/hold times
but master latch is opening so ¥ may change

Figure 14,

There is one tricky problem we have to solve when designing the circuitry for the register. On the falling
clock edge, the slave latch transitions from open to closed and so its input (the STAR signal) must meet
the setup and hold times of the slave latch in order to ensure correct operation.
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The complication is that the master latch opens at the same time, so the STAR signal may change
shortly after the clock edge. The contamination delay of the master latch tells us how long the old
value will be stable after the falling clock edge. And the hold time on the slave latch tells us how long it
has to remain stable after the falling clock edge.

So to ensure correct operation of the slave latch, the contamination delay of the master latch has to
be greater than or equal to the hold time of the slave latch. Doing the necessary analysis can be a bit
tricky since we have to consider manufacturing variations as well as environmental factors such as
temperature and power supply voltage. If necessary, extra gate delays (e.g., pairs of inverters) can be
added between the master and slave latches to increase the contamination delay on the slave’s input
relative to the falling clock edge. Note that we can only solve slave latch hold time issues by changing
the design of the circuit.

D-Register Timing

D-Register Timing 1

<tpp
—

Step >
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tepTup: Setup time
guarantee that D has propagated through feedback path before master
closes

tgoLp: hold time
guarantee master is closed and data is stable before allowing D to
change

Figure 15.

Here’s a summary of the timing specifications for a D register.

Changes in the Q signal are triggered by a rising edge on the clock input. The propagation delay tpp of
the register is an upper bound on the time it takes for the Q output to become valid and stable after
the rising clock edge.

The contamination delay of the register is a lower bound on the time the previous value of Q remains
valid after the rising clock edge.

Note that both tcp and tpp are measured relative to the rising edge of the clock. Registers are designed
to be lenient in the sense that if the previous value of Q and the new value of Q are the same, the
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stability of the Q signal is guaranteed during the rising clock edge. In other words, the tcp and tpp
specifications only apply when the Q output actually changes.

In order to ensure correct operation of the master latch, the register’s D input must meet the setup and
hold time constraints for the master latch. So the following two specifications are determined by the
timing of the master latch.

tseTup is the amount of time that the D input must be valid and stable before the rising clock edge
and tgorp is the amount of time that D must be valid and stable after the rising clock. This region of
stability surrounding the clock edge ensures that we’re obeying the dynamic discipline for the master
latch.

So when you use a D register component from a manufacturer’s gate library, you’ll need to look up
these four timing specifications in the register’s data sheet in order to analyze the timing of your overall
circuit. We’'ll see how this analysis is done in the next section.

Single-clock Synchronous Circuits

Single-clock Synchronous Circuits

W"efll use registers in a highly constrained way to build
digital systems:

Does that
e
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Q) shared among all clocked
devices
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combinational delay + setup time
* Change saved state after
noise-inducing logic
transitions have stopped!

Figure 16.

In 6.004, we have a specific plan on how we’ll use registers in our designs, which we call the single-clock
synchronous discipline.

Looking at the sketch of a circuit on the left, we see that it consists of registers - the rectangular icons
with the edge-triggered symbol - and combinational logic circuits, shown here as little clouds with
inputs and outputs.
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Remembering that there is no combinational path between a register’s input and output, the overall
circuit has no combinational cycles. In other words, paths from system inputs and register outputs to
the inputs of registers never visit the same combinational block twice.

A single periodic clock signal is shared among all the clocked devices. Using multiple clock signals is
possible, but analyzing the timing for signals that cross between clock domains is quite tricky, so life is
much simpler when all registers use the same clock.

The details of which data signals change when are largely unimportant. All that matters is that signals
hooked to register inputs are stable and valid for long enough to meet the registers’ setup time. And, of
course, stay stable long enough to meet the registers’ hold time.

We can guarantee that the dynamic discipline is obeyed by choosing the clock period to be greater
then the tpp of every path from register outputs to register inputs, plus, of course, the registers’ setup
time.

A happy consequence of choosing the clock period in this way is that at the moment of the rising clock
edge, there are no other noise-inducing logic transitions happening anywhere in the circuit. Which
means there should be no noise problems when we update the stored state of each register.

Our next task is to learn how to analyze the timing of a single-clock synchronous system.

Timing in a Single-clock System

Timing in a Single-clock System
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Figure 17.

Here’s a model of a particular path in our synchronous system. A large digital system will have many
such paths and we have to do the analysis below for each one in order to find the path that will
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determine the smallest workable clock period. As you might suspect, there are computed-aided design
programs that will do these calculations for us.

There’s an upstream register, whose output is connected to a combinational logic circuit which gener-
ates the input signal, labeled STAR, to the downstream register.

Let’s build a carefully-drawn timing diagram showing when each signal in the system changes and
when it is stable.

The rising edge of the clock triggers the upstream register, whose output (labeled Q) changes as
specified by the contamination and propagation delays of the register. g, maintains its old value for
at least the contamination delay of REG1, and then reaches its final stable value by the propagation
delay of REGL. At this point Qr, will remain stable until the next rising clock edge.

Now let’s figure out the waveforms for the output of the combinational logic circuit, marked with a
red star in the diagram. The contamination delay of the logic determines the earliest time STAR will
go invalid measured from when Qg, went invalid. The propagation delay of the logic determines the
latest time STAR will be stable measured from when (), became stable.

Now that we know the timing for STAR, we can determine whether STAR will meet the setup and hold
times for the downstream register REG2. Time ¢; measures how long STAR will stay valid after the
rising clock edge. t; is the sum of REG1’s contamination delay and the logic’s contamination delay.
The HOLD time for REG2 measures how long STAR has to stay valid after the rising clock edge in order
to ensure correct operation. So ¢1 has to be greater than or equal to the HOLD time for REG2.

Time t is the sum of the propagation delays for REG1 and the logic, plus the SETUP time for REG2. This
tells us the earliest time at which the next rising clock edge can happen and still ensure that the SETUP
time for REG2 is met. So ¢2 has to be less than or equal to the time between rising clock edges, called
the clock period or tcp k. If the next rising clock happens before ¢5, we’ll be violating the dynamic
discipline for REG2.

So we have two inequalities that must be satisfied for every register-to-register path in our digital
system. If either inequality is violated, we won’t be obeying the dynamic discipline for REG2 and our
circuit will not be guaranteed to work correctly.

Looking at the inequality involving tcrk, we see that the propagation delay of the upstream register
and setup time for the downstream register take away from the time available useful work performed
by the combinational logic. Not surprisingly, designers try to use registers that minimize these two
times.

What happens if there’s no combinational logic between the upstream and downstream registers? This
happens when designing shift registers, digital delay lines, etc. Well, then the first inequality tells us
that the contamination delay of the upstream register had better be greater than or equal to the hold
time of the downstream register. In practice, contamination delays are smaller than hold times, so
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in general this wouldn’t be the case. So designers are often required to insert dummy logic, e.g., two
inverters in series, in order to create the necessary contamination delay.

Finally we have to worry about the phenomenon called clock skew, where the clock signal arrives at
one register before it arrives at the other. We won’t go into the analysis here, but the net effect is to
increase the apparent setup and hold times of the downstream register, assuming we can’t predict the
sign of the skew.

The clock period, tcr i, characterizes the performance of our system. You may have noticed that Intel
is willing to sell you processor chips that run at different clock frequencies, e.g., a 1.7 GHz processor
vs. a 2 GHz processor. Did you ever wonder how those chips are different? As is turns out they’re not!
What’s going on is that variations in the manufacturing process mean that some chips have better tpp
than others. On fast chips, a smaller tpp for the logic means that they can have a smaller tcrx and
hence a higher clock frequency. So Intel manufactures many copies of the same chip, measures their
tpps and selects the fast ones to sell as higher-performance parts. That’s what it takes to make money
in the chip biz!

Model: Discrete Time

Model: Discrete Time
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DREG ﬁ;'c
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» Simple rules — eg truth tables — relating outputs to
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+« ABSTRACTION: Finite State Machines (next lecture!)

Figure 18.

Using a D register as the memory component in our sequential logic system works great! At each rising
edge of the clock, the register loads the new state, which then appears at the register’s output as the
current state for the rest of the clock period. The combinational logic uses the current state and the
value of the inputs to calculate the next state and the values for the outputs. A sequence of rising
clock edges and inputs will produce a sequence of states, which leads to a sequence of outputs. In the
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next chapter we’ll introduce a new abstraction, finite state machines, that will make it easy to design
sequential logic systems.

Sequential Circuit Timing

Sequential Circuit Timing
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Figure 19.

Let’s use the timing analysis techniques we’ve learned on the sequential logic system shown here. The
timing specifications for the register and combinational logic are as shown. Here are the questions we

need to answer.

The contamination delay of the combinational logic isn’t specified. What does it have to be in order for
the system to work correctly? Well, we know that the sum of register and logic contamination delays
has to be greater than or equal to the hold time of the register. Using the timing parameters we do
know along with a little arithmetic tells us that the contamination delay of the logic has to be at least 1
ns.

What is the minimum value for the clock period ¢k ? The second timing inequality from the previous
section tells us that tcrx has be greater than than the sum of the register and logic propagation delays
plus the setup time of the register. Using the known values for these parameters gives us a minimum
clock period of 10ns.

What are the timing constraints for the Input signal relative to the rising edge of the clock? For this
we’ll need a diagram! The Next State signal is the input to the register so it has to meet the setup and
hold times as shown here. Next we show the Input signal and how the timing of its transitions affect
to the timing of the Next State signal. Now it’s pretty easy to figure out when Input has to be stable
before the rising edge of the clock, i.e., the setup time for Input. The setup time for Input is the sum
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of propagation delay of the logic plus the setup time for the register, which we calculate as 7ns. In
other words, if the Input signal is stable at least 7ns before the rising clock edge, then Next State will be
stable at least 2ns before the rising clock edge and hence meet the register’s specified setup time.

Similarly, the hold time of Input has to be the hold time of the register minus the contamination delay
of the logic, which we calculate as 1 ns. In other words, if Input is stable at least 1 ns after the rising
clock edge, then Next State will be stable for another 1 ns, i.e., a total of 2 ns after the rising clock edge.
This meets the specified hold time of the register.

This completes our introduction to sequential logic. Pretty much every digital system out thereis a
sequential logic system and hence is obeying the timing constraints imposed by the dynamic discipline.
So next time you see an ad for a 1.7GHz processor chip, you’ll know where the “1.7” came from!

Summary
Summary
Basic memory elements: >ts >ty
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* 2 Latches => Register 0 XXX
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Next Lecture Topic!
Figure 20.
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