
Standard Cell Library



Standard Cell Library

About

This document is part of the "Computation Structures" course, available at https://PersonalComput
e.net/resources/computation-structures.

The objective of this course is to provide a solid foundation on the inner workings of computers, and
how to use them efficiently. Practically, it tries to answer the question "Why is my computer working
like this?" (where "like this" can mean "slow", "fast", "efficient" or "intermittently freezing").

Its intended audience is first and second-year university students, so its prerequisites are high-school
levels of understanding for math and physics, and a beginner-level understanding of programming. It
is also very useful to anyone whose job involves programming, but hasn’t taken a formal course in
Computer Architectures - a topic that is often overlooked in software or math-oriented degrees.

The Course Contents chapters use the materials from the original course (the MIT OpenCourseWare
release), with very small changes (mostly cosmetic in nature).

Where existing, the Real World Implications chapters provide some additional context and explana-
tions, not present in the MIT OpenCourseWare edition.

If you wish to download the "source code" for the course, go to https://github.com/PersonalCompute-
net/computation-structures/.

Credits

Computation Structures (6.004), Spring 2017 - Original course content, from MIT OpenCourseWare.
Course led by Chris Terman, at MIT.
Originally published at https://ocw.mit.edu/6-004S17 and https://github.com/computation-
structures/course/.
Licensed under Creative Commons BY-NC-SA 4.0 - https://ocw.mit.edu/terms.

Eisvogel - LaTeX template and cover artwork.
Created by Pascal Wagler - https://github.com/Wandmalfarbe/.
Originally published at https://github.com/Wandmalfarbe/pandoc-latex-template/.
Licensed under BSD 3-clause license.

Licensing

This work is licensed under a Creative Commons “Attribution-
NonCommercial-ShareAlike 4.0 International” license.

URL: https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en

1

https://PersonalCompute.net/resources/computation-structures
https://PersonalCompute.net/resources/computation-structures
https://github.com/PersonalCompute-net/computation-structures/
https://github.com/PersonalCompute-net/computation-structures/
https://ocw.mit.edu/6-004S17
https://github.com/computation-structures/course/
https://github.com/computation-structures/course/
https://ocw.mit.edu/terms
https://github.com/Wandmalfarbe/
https://github.com/Wandmalfarbe/pandoc-latex-template/
https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en
https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en
https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en


Standard Cell Library

Standard Cell Library

The Standard Cell Library defines a set of logic gates, latches and registers to be used when doing
gate-level simulation. These gates are simulated using Jade’s built-in logic primitives, rather than as
pullup and pulldown networks of FETs. The resulting increase in simulation speed makes it possible to
simulate very large digital designs.

Each library element includes information about its timing specifications and size, used by the gate-
level simulator to determine the performance and total size of your design. This information is based
on a 180nm CMOS process, which is now out of date! Current state-of-the-art processes have sub-20nm
features.

Module Function
tCD

(ns)
tPD

(ns)
tR

(ns/pf)
tF

(ns/pf)
load
(pf)

size
(µ2)

/gates/inverter z = a 0.005 0.02 2.30 1.20 0.007 10

/gates/buffer
z = a

0.020 0.08 2.20 1.20 0.003 13

/gates/buffer_h 0.020 0.07 1.10 0.60 0.005 17

/gates/tristate z =

⎧⎪⎨⎪⎩ a e = 1

not driven e = 0
0.030 0.15 2.30 1.30 0.004 23

/gates/and2 z = a · b 0.030 0.12 4.50 2.30 0.002 13

/gates/and3 z = a · b · c 0.030 0.16 2.50 2.50 0.002 20

/gates/nand2 z = a · b 0.010 0.03 4.50 2.80 0.004 10

/gates/nand3 z = a · b · c 0.010 0.05 4.20 3.00 0.005 13

/gates/nand4 z = a · b · c · d 0.010 0.07 4.40 3.50 0.005 17

/gates/or2 z = a + b 0.030 0.15 4.50 2.50 0.002 13

/gates/or3 z = a + b + c 0.040 0.21 4.50 2.50 0.003 17

/gates/or4 z = a + b + c + d 0.060 0.29 4.50 2.60 0.003 20

/gates/nor2 z = a + b 0.010 0.05 6.70 2.40 0.004 10

/gates/nor3 z = a + b + c 0.020 0.08 8.50 2.40 0.005 13

/gates/nor4 z = a + b + c + d 0.020 0.12 9.50 2.40 0.005 20

/gates/xor2 z = a ⊕ b 0.030 0.14 4.50 2.50 0.006 27

/gates/xnor2 z = a ⊕ b 0.030 0.14 4.50 2.50 0.006 27

/gates/mux2 z =

⎧⎪⎨⎪⎩ d0 s = 0

d1 s = 1
0.020 0.12 4.50 2.50 0.005 27

2



Standard Cell Library

Module Function
tCD

(ns)
tPD

(ns)
tR

(ns/pf)
tF

(ns/pf)
load
(pf)

size
(µ2)

/gates/mux4 z =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

d0 s1s0 = 0b00

d1 s1s0 = 0b01

d2 s1s0 = 0b10

d3 s1s0 = 0b11

0.020 0.12 4.50 2.50 0.005 27

/gates/dreg d → q on clk ↑ 0.030 0.19 4.30 2.50 0.002 56

The Jade Memory component

Jade has a built-in memory device that can be used to model memories with a specified width and
number of locations, and with one to three independent ports. Each port has 3 control signals and the
specified number of address and data wires. You can instantiate a memory device in your circuit by
clicking on MEM in the toolbar and dragging it onto the schematic. Then double-click the component
to specify the width of the address (naddr, between 1 and 20), the width of the data (ndata, between 1
and 128), the number of ports, and (optionally) the initial contents. All the ports of a memory access
the same internal storage, but each port operates independently.

Each port has the following connections:

• OE is the output enable input for a read port. When 1, data is driven onto the data pins; when 0,
the output pins are not driven by this memory port. If this port is only a write port, connect this
terminal to ground (e.g., connect to the signal 0'1). If the port is only a read port and should
always be enabled, connect this terminal to the power supply node (e.g., connect to the signal
1'1).

• CLK is the clock input for write ports. When wen=1, data from the data terminals is written into
the memory on the rising edge of clk. If this port is only a read port, connect this terminal to
ground.

• WE is the write enable input for write ports. See the description of CLK for details about the write
operation. If this port is only a read port, connect this terminal to ground.

• A[naddr-1:0] are the address inputs, listed most significant bit first. The values of these termi-
nals are used to compute the address of the memory location to be read or written. The number
of locations in the memory is determined by width of the address: nlocations = 2ˆnaddr.

• D[ndata-1:0] are the data inputs/tristate outputs, listed most significant bit first.

The contents property can be used to specify the initial contents of a memory (if not specified, the
memory is initialized to all X’s). The memory is initialized, location-by-location, from the data values

3



Standard Cell Library

given in the list. The least significant bit (bit 0) of a value is used to initialize bit 0 of a memory location,
bit 1 of a value is used to initialize bit 1 of a memory location, etc.

The contents property should be a list of numeric values separated by whitespace (spaces, tabs,
newlines). You can use “0b” and “0x” notation to specify binary and hex values. The characters “+”
and “_” are ignored and can be used to improve readability. The character “?” can be used in binary
and hex values to represent “don’t care” – Jade will replace “?” with “0”. Comments can be included in
the contents using the standard “//” and “/* ... */” comment syntax.

Initialized memories are useful for modeling ROMs (e.g., for control logic) or simply for loading programs
into the main memory of a processor. One caveat: if the memory has a write port and sees a rising
clock edge with its write enable not equal to 0 and with one or more of the address bits undefined (i.e.,
with a value of “X”), the entire contents of the memory will also become undefined. So you should
make sure that the write enable for a write port is set to 0 by your reset logic before the first clock
edge, or else your initialization will be for naught.

The following options are the default values for the electrical and timing parameters for the memory.

Parameter Description

tcd= seconds The contamination delay in seconds. Default value = 20ps.

tpd= seconds The propagation delay in seconds. This is how long it takes for changes in
the address or output enable terminals to be reflected in the values driven
by the data terminals. Default value is determined from the number of
locations:
Number of locations tP D Inferred type

nlocations ≤ 128 2ns Register file

128 < nlocations ≤ 1024 4ns Static RAM

nlocations > 1024 40ns Dynamic RAM

tr= seconds_per_farad The output rise time in seconds per farad of output load. Default value is
1000, i.e., 1 ns/pf.

tf= seconds_per_farad The output fall time in seconds per farad of output load. Default value is
500, i.e., 0.5 ns/pf.

cin= farads Input terminal capacitance in farads. Default value = 0.05pf.

cout= farads Output terminal capacitance in farads. Default value = 0pf (additional tPD

due to output terminal loading is already included in default tPD).

The size of a memory is determined by the sum of the sizes of the various memory building blocks
shown in the following table:

4



Standard Cell Library

Component Size (µ2) Notes

Storage cells nbits * cellsize * 1µ2 nbits = nlocs * width
cellsize = nports (for ROMs and DRAMs)
cellsize = nprots + 5 (for SRAMs)

Address buffers nports * naddr * 20µ2 nports = total number of memory ports

Address decoders nports * (naddr+3)/4 * 4µ2 Assuming 4-input ANDs

Tristate drivers nreads * width * 30µ2 nreads = number of read ports

Write-data drivers nreads * width * 20µ2 nwrites = number of write ports

5


	Standard Cell Library
	The Jade Memory component

