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Course Contents

In the previous lecture, we discussed how to encode information as sequences of bits. In this lecture,
we turn our attention to finding a useful physical representation for bits, our first step in building
devices that can process information.

Encoding Information

Concrete Encoding of Information

To this point we've Rosetta Stone DNA
discussed encoding
information using bits.
But where do bits come
from?

If we’re going to design a
machine that
manipulates information,
how should that
information be

physically encoded? Captmando (CC BY-SA 30) k{_\/
o Cytosine \g{’
Guanine end
What makes a gOOd blt? Madeleine Price Ball (CC BY-SA 3.0)

- small, inexpensive (we want a lot of them)
- stable (reliable, repeatable)
- ease and speed of manipulation
(access, transform, combine, transmit, store)

Figure 1.

So, what makes a good bit, i.e., what properties do we want our physical representation of bits to

have?

Well, we’ll want a lot of them. We expect to carry billions of bits around with us, e.g., music files. And
we expect to have access to trillions of additional bits on the web for news, entertainment, social
interactions, commerce - the list goes on and on. So we want bits to be small and inexpensive.

Mother Nature has a suggestion: the chemical encoding embodied in DNA, where sequences of the
nucleotides Adenine, Thymine, Guanine and Cytosine form codons that encode geneticinformation that
serve as the blueprint for living organisms. The molecular scale meets our size requirements and there’s
active research underway on how to use the chemistry of life to perform interesting computations on a
massive scale.

We’d certainly like our bits to be stable over long periods of time - once a0, always a 0! The Rosetta Stone,
shown here as part of its original tablet containing a decree from the Egyptian King Ptolemy V, was
created in 196 BC and encoded the information needed for archeologists to start reliably deciphering
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Egyptian hieroglyphics almost 2000 years later. But, the very property that makes stone engravings a
stable representation of information makes it difficult to manipulate the information.

Which brings us to the final item on our shopping list: we’d like our representation of bits to make it
easy to quickly access, transform, combine, transmit and store the information they encode.

Electricity to the Rescue

Let’s Use Electrical Phenomenon...

Consider using phenomenon associated with charged particles:
voltages phase

currents frequency

In this course we’ll use voltages to encode information. But the
best choice depends on the intended application...

Voltage pros:
easy generation, detection
lots of engineering knowledge

potentially lswr power in steady state
zero

Voltage cons:
easily affected by environment N
DC connectivity required?
R & C effects slow things down

Figure 2.

Assuming we don’t want to carry around buckets of gooey DNA or stone chisels, how should we
represent bits?

With some engineering we can represent information using the electrical phenomenon associated
with charged particles. The presence of charged particles creates differences in electrical potential
energy we can measure as voltages, and the flow of charged particles can be measured as currents.
We can also encode information using the phase and frequency of electromagnetic fields associated
with charged particles - these latter two choices form the basis for wireless communication. Which
electrical phenomenon is the best choice depends on the intended application.

In this course, we’ll use voltages to represent bits. For example, we might choose 0V to represent a 0-bit
and 1V to represent a 1-bit. To represent sequences of bits we can use multiple voltage measurements,
either from many different wires, or as a sequence of voltages over time on a single wire.

A representation using voltages has many advantages: electrical outlets provide an inexpensive and
mostly reliable source of electricity and, for mobile applications, we can use batteries to supply what we
need. For more than a century, we’ve been accumulating considerable engineering knowledge about
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voltages and currents. We now know how to build very small circuits to store, detect and manipulate
voltages. And we can make those circuits run on a very small amount of electrical power. In fact, we
can design circuits that require close to zero power dissipation in a steady state if none of the encoded

information is changing.

However, a voltage-based representation does have some challenges: voltages are easily affected by
changing electromagnetic fields in the surrounding environment. If | want to transmit voltage-encoded
information to you, we need to be connected by a wire. And changing the voltage on a wire takes some
time, since the timing of the necessary flow of charged particles is determined by the resistance and
capacitance of the wire. In modern integrated circuits, these RC time constants are small, but sadly not

Zero.

We have good engineering solutions for these challenges, so let’s get started!

Representing Information with Voltage

Representing Information with Voltage

Representation of each (x,y) point on a B&W image:
0 volts: BLACK ;
1 volt: WHITE
0.37 volts: 37% Gray

John Phelan (CC BY 3.0)

How much information at each point?

Suppose we can reliably distinguish voltages
that differ by 1/2N volts. Then we can represent
N bits of information by voltages in the range OV
to 1V. What are realistic values for N?

Figure 3.

Consider the problem of using voltages to represent the information in a black-and-white image. Each
(x,y) point in the image has an associated intensity: black is the weakest intensity, white the strongest.
An obvious voltage-based representation would be to encode the intensity as a voltage, say 0V for
black, 1V for white, and some intermediate voltage for intensities in-between.

First question: how much information is there at each point in the image? The answer depends on
how well we can distinguish intensities or, in our case, voltages. If we can distinguish arbitrarily small
differences, then there’s potentially an infinite amount of information in each point of the image. But,
as engineers, we suspect there’s a lower-bound on the size of differences we can detect.
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To represent the same amount of information that can be represented with N bits, we need to be able
to distinguish a total 2%V voltages in the range of OV to 1V. For example, for N = 2, we’d need to be able
to distinguish between four possible voltages. That doesn’t seem too hard - an inexpensive volt-meter
would let us easily distinguish between 0V, 1/3V, 2/3V and 1V.

In theory, N can be arbitrarily large. In practice, we know it would be quite challenging to make
measurements with, say, a precision of 1-millionth of a volt and probably next to impossible if we
wanted a precision of 1-billionth of a volt. Not only would the equipment start to get very expensive
and the measurements very time consuming, but we’d discover that phenomenon like thermal noise
would confuse what we mean by the instantaneous voltage at a particular time.

So our ability to encode information using voltages will clearly be constrained by our ability to reliably
and quickly distinguish the voltage at particular time.

Using Voltages to Encode a Picture

Using Voltages to Encode a Picture

Representation of a picture:
Scan points in some prescribed raster order...
Generate voltage waveform:

ol

v

NTSC rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr white

- black

syne

Figure 4.

To complete our project of representing a complete image, we’ll scan the image in some prescribed
raster order - left-to-right, top-to-bottom - converting intensities to voltages as we go. In this way, we
can convert the image into a time-varying sequence of voltages. This is how the original televisions
worked: the picture was encoded as a voltage waveform that varied between the representation for
black and that for white. Actually the range of voltages was expanded to allow the signal to specify the
end of the horizontal scan and the end of an image, the so-called sync signals. We call this a continuous
waveform to indicate that it can take on any value in the specified range at a particular pointin time.
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Information Processing = Computation

Information Processing = Computation

\% 4’4’V

vy |

Why have processing blocks?

+ Pre-packaged functionality: rely on behavior

without having to be an analog engineer Wow, rules simple

* Predictable composition of functions enough for a

— Tinker-toy assembly ?rzgrc;mmer to
ollow.
* Guaranteed behavior:

if components work, system will work!

Figure 5.

Now let’s see what happens when we try to build a system to process this signal.

We’ll create a system using two simple processing blocks. The COPY block reproduces on its output
whatever voltage appears on its input. The output of a COPY block looks the same as the original image.
The INVERTING block produces a voltage of 1 — V' when the input voltage is V, i.e., white is converted
to black and vice-versa. We get the negative of the input image after passing it through an INVERTING
block.

Why have processing blocks? Using pre-packaged blocks is a common way of building large circuits -
we can assemble a system by connecting the blocks one to another and reason about the behavior
of the resulting system without having to understand the internal details of each block. The pre-
packaged functionality offered by the blocks makes them easy to use without having be an expert
analog engineer!

Moreover, we would we expect to be able to wire up the blocks in different configurations when building
different systems and be able to predict the behavior of each system based on the behavior of each
block. This would allow us build systems like tinker toys, simply by hooking one block to another.
Even a programmer who doesn’t understand the electrical details could expect to build systems that
perform some particular processing task.

The whole idea is that there’s a guarantee of predictable behavior: if the components work and we
hook them up obeying whatever the rules are for connecting blocks, we would expect the system to
work as intended.
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Let’s Build a System!

Let’s Build a System!

Copy [——Inv|—
mput A Copy—[imv}—

{Copy}—[tnv|—  Realit
R =

output

Figure 6.

So, let’s build a system with our COPY and INVERTING blocks. Here’s an image processing system using
a few instances each block. What do we expect the output image to look like?

Well, the COPY blocks don’t change the image and there are an even number of INVERTING blocks, so,
in theory, the output image should be identical to the input image.

But in reality, the output image isn’t a perfect copy of the input, it’s slightly fuzzy - the intensities
are slightly off and it looks like sharp changes in intensity have been smoothed out, creating a blurry
reproduction of the original. What went wrong?
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Why Did Our System Fail?

Why Did Our System Fail?

Why doesn’t theory match reality?
1. COPY block doesn’t work right
2. INV block doesn’t work right
3. Theory is imperfect
4. Reality is imperfect
5. Our system architecture stinks

ANSWER: all of the above!

Noise and inaccuracy are inevitable; we can’t
reliably reproduce infinite information — we must
design our system to tolerate some amount of
error if it is to process information reliably.

Figure 7.

Why doesn’t theory match reality?

Perhaps the COPY and INVERTING blocks don’t work correctly? That’s almost certainly true, in the
sense that they don’t precisely obey the mathematical description of their behavior. Small manufac-
turing variations and differing environmental conditions will cause each instance of the COPY block
to produce not V volts for a V-volt input, but V+epsilon volts, where epsilon represents the amount of
error introduced during processing. Ditto for the INVERTING block.

The difficulty is that in our continuous-value representation of intensity, V+epsilon is a perfectly correct
output value, just not for a V-volt input! In other words, we can’t tell the difference between a slightly
corrupted signal and a perfectly valid signal for a slightly different image.

More importantly - and this is the real killer - the errors accumulate as the encoded image passes
through the system of COPY and INVERTING blocks. The larger the system, the larger the amount of
accumulated processing error. This doesn’t seem so good: it would be awkward, to say the least, if we
had to have rules about how many computations could be performed on encoded information before
the results became too corrupted to be usable.

You would be correct if you thought this meant that the theory we used to describe the operation of our
system was imperfect. We’d need a very complicated theory indeed to capture all the possible ways
in which the output signal could differ from its expected value. Those of us who are mathematically
minded might complain that “reality is imperfect”. That’s going a bit far though. Reality is what it is
and, as engineers, we need to build our systems to operate reliably in the real world. So perhaps the
real problem lies in how we chose to engineer the system.
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In fact, all of the above are true! Noise and inaccuracy are inevitable. We can’t reliably reproduce
infinite information. We must design our system to tolerate some amount of error if it is to process
information reliably. Basically, we need to find a way to notice that errors have been introduced by a
processing step and restore the correct values before the errors have a chance to accumulate. How to
do that is our next topic.

The Digital Abstraction

The Digital Abstraction

“Ideal”
Abstract World

Real World

E\; 1\ Bits
— \

Manufacturing
Variations

Volts or
Electrons or

Ergs or Gallons

Keep in mind that the world is not digital, we would simply
like to engineer it to behave that way. Furthermore, we must
use real physical phenomena to implement digital designs!

Figure 8.

To solve our engineering problem, we will introduce what we’ll call the digital abstraction. The key
insight is to use the continuous world of voltages to represent some small, finite set of values, in our
case, the two binary values, 0 and 1. Keep in mind that the world is not inherently digital, we would
simply like to engineer it to behave that way, using continuous physical phenomenon to implement
digital designs.

As a quick aside, let me mention that there are physical phenomenon that are naturally digital, i.e.,
that are observed to have one of several quantized values, e.g., the spin of an electron. This came as a
surprise to classical physicists who thought measurements of physical values were continuous. The
development of quantum theory to describe the finite number of degrees of freedom experienced
by subatomic particles completely changed the world of classical physics. We’re just now starting to
research how to apply quantum physics to computation and there’s interesting progress to report
on building quantum computers. But for this course, we’ll focus on how to use classical continuous
phenomenon to create digital systems.
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Using Voltages Digitally

Using Voltages “Digitally”

Key idea: encode only one bit of information: 2 values “0”, “1”
* Use the same uniform representation convention for every
component and wire in our digital system

Hard to distinguish

/ VA J
Attempt #1: & Vrg-efrom Vog+e
V< Vpy V = Vg

X interpreted as “0” | interpreted as “1”
L . A
I UL 1

volts

Vru
Attempt #2:

VsV, Vi<V < Vy V2 Vy
interpreted as “0” : “Forbidden to ask” : interpreted as “1”
A A A

/ 9 ! L L ' volts
H . :

Vi Vu

Figure 9.

The key idea in using voltages digitally is to have a signaling convention that encodes only one bit of
information at time, i.e., one of two values, 0 or 1. We’ll use the same uniform representation for every
component and wire in our digital system.

It’ll take us three attempts to arrive at a voltage representation that solves all the problems. Our first
cut is the obvious one: simply divide the range of voltages into two sub-ranges, one range to represent
0, the other range to represent 1. Pick some threshold voltage, V4, to divide the range in two. When a
voltage Vis less than the threshold voltage, we’ll take it to represent a bit value of 0. When a voltage V
is greater than or equal to the threshold voltage, it will represent a bit value of 1. This representation
assigns a digital value to all possible voltages.

The problematic part of this definition is the difficulty in interpreting voltages near the threshold. Given
the numeric value for a particular voltage, it’s easy to apply the rules and come up with the correspond-
ing digital value. But determining the correct numeric value accurately gets more time consuming and
expensive as the voltage gets closer and closer to the threshold. The circuits involved would have to
be made of precision components and run in precisely-controlled physical environments - hard to
accomplish when we consider the multitude of environments and the modest cost expectations for
the systems we want to build.

So although this definition has an appealing mathematical simplicity, it’s not workable on practical
grounds. This one gets a big red X.

In our second attempt, we’ll introduce two threshold voltages: V1, and V4. Voltages less than or equal
to V1, will be interpreted as 0, and voltages greater than or equal to V31 will be interpreted as 1. The

10
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range of voltages between V1, and Vi is called the forbidden zone, where we are forbidden to ask
for any particular behavior of our digital system. A particular system can interpret a voltage in the
forbidden as either a 0 or a 1, and is not even required to be consistent in its interpretation. In fact the
system is not required to produce any interpretation at all for voltages in this range.

How does this help? Now we can build a quick-and-dirty voltage-to-bit converter, say by using a
high-gain op-amp and reference voltage somewhere in the forbidden zone to decide if a given voltage
is above or below the threshold voltage. This reference voltage doesn’t have to be super-accurate,
so it could be generated with, say, a voltage divider built from low-cost 10%-accurate resistors. The
reference could change slightly as the operating temperature varied or the power supply voltage
changed, and so on. We only need to guarantee the correct behavior of our converter for voltages

below V1, or above V4.

This representation is pretty promising and we’ll tentatively give it a green checkmark for now. After a
bit more discussion, we’ll need to make one more small tweak before we get to where we want to go.

Combinational Devices

A Digital Processing Element

A combinational device is a circuit element that has

— one or more digital inputs
— one or more digital outputs

— a functional specification that details the value of each
output for every possible combination of valid input
values

— a timing specification consisting (at minimum) of an
upper bound tpp on the required time for the device to
compute the specified output values from an arbitrary
set of stable, valid input values

Static
discipline

Output a “1” if at
least 2 out of 3 of
my inputs are a “1”.
Otherwise, output “0”.

input A

input B output Y
input C I will generate a valid
——* output in no more than
2 minutes after
seeing valid inputs

Figure 10.

We’re now in a position to define our what it means to be a digital processing element. We say a device
is a combinational device if it meets the following four criteria:

First, it should have digital inputs, by which we mean the device uses our signaling convention, in-
terpreting input voltages below V7, as the digital value 0, and voltages above V41 as the digital value
1.

11
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Second, the device’s outputs should also be digital, producing outputs of 0 by generating voltages less
than or equal to V1, and outputs of 1 by generating voltages greater than or equal to V4.

With these two criteria, we should be able to hook the output of one combinational device to the input
of another and expect the signals passing between them to be interpreted correctly as 0’s and 1’s.

Next, a combinational device is required to have a functional specification that details the value of
each output for every possible combination of digital values on the inputs.

In the example, the device has three digital inputs, and since each input can take on one of two digital
values, there are 2 - 2 - 2 or eight possible input configurations. So the functional specification simply
has to tell us the value of the output Y when the inputs are 000, and the output when the inputs are
001, and so on, for all 8 input patterns. A simple table with eight rows would do the trick.

Finally, a combinational device has a timing specification that tells us how long it takes for the output
of the dev ice to reflect changes in its input values. At a minimum, there must a specification of the
propagation delay, called tpp, that is an upper bound on the time from when the inputs reach stable
and valid digital values, to when the output is guaranteed to have a stable and valid output value.

Collectively, we call these four criteria the static discipline, which must be satisfied by all combinational
devices.

A Combinational Digital System

A Combinational Digital System

A set of interconnected elements is a combinational
device if
— each circuit element is combinational

— every input is connected to exactly one output
or to some vast supply of constant O’s and 1’s

— the circuit contains no directed cycles

6 Why is this true?

Figure 11.

In order to build larger combinational systems from combinational components, we’ll follow the
composition rules set forth below.

12
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First, each component of the system must itself be a combinational device.

Second, each input of each component must be connected a system input, or to exactly one output of
another device, or to a constant voltage representing the value 0 or the value 1.

Finally, the interconnected components cannot contain any directed cycles, i.e., paths through the
system from its inputs to its outputs will only visit a particular component at most once.

Our claim is that systems built using these composition rules will themselves be combinational devices.
In other words, we can build big combinational devices out of combinational components. Unlike our
flaky analog system from the start of the chapter, the system can be of any size and still be expected to
obey the static discipline.

Why is this true?

Is This a Combination Device?

Is This a Combinational Device?

A, B and C are combinational devices. Is the following circuit
a combinational device?

A >

* Does it have digital inputs?

« Does it have digital outputs?

+ Can you derive a functional description?
+ Can you derive a tpp?

Figure 12,

To see why the claim is true, consider the following system built from the combinational devices A, B
and C. Let’s see if we can show that the overall system, as indicated by the containing blue box, will
itself be combinational. We’ll do this by showing that the overall system does, in fact, obey the static
discipline.

First, does the overall system have digital inputs? Yes! The system’s inputs are inputs to some of the
component devices. Since the components are combinational, and hence have digital inputs, the
overall system has digital inputs. In this case, the system is inheriting its properties from the properties
of its components.

13
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Second, does the overall system have digital outputs? Yes, by the same reasoning: all the system’s
outputs are connected to one of the components and since the components are combinational, the
outputs are digital.

Third, can we derive a functional specification for the overall system, i.e., can we specify the expected
output values for each combination of digital input values? Yes, we can by incrementally propagating
information about the current input values through the component modules. In the example shown,
since A is combinational, we can determine the value on its output given the value on its inputs by
using A’s functional specification. Now we know the values on all of B’s inputs and can use its functional
specification to determine its output value. Finally, since we’ve now determined the values on all of C’s
inputs, we can compute its output value using C’s functional specification. In general, since there are
no cycles in the circuit, we can determine the value of every internal signal by evaluating the behavior
of the combinational components in an order that’s determined by the circuit topology.

Finally, can we derive the system’s propagation delay, tpp, using the propagation delays of the compo-
nents? Again, since there are no cycles, we can enumerate the finite-length paths from system inputs
to system outputs. Then, we can compute the tpp along a particular path by summing the ¢pps of
the components along the path. The tpp of the overall system will be the maximum of the path ¢tpps
considering all the possible paths from inputs to outputs, i.e, the tpp of the longest such path.

So the overall system does in fact obey the static discipline and so it is indeed a combinational device.

Pretty neat - we can use our composition rules to build combinational devices of arbitrary complexity.

Dealing With Noise

Will This System Work?

Valid “0”: V-¢ Vi +e: not a valid signal
) Noise Q
Combinational Combinational
device device

Upstream device transmits a signal at V -g, a valid “0”. Noise
on the connecting wire causes the downstream device to
receive V +g, a signal in the forbidden zone.

_~ Hmm. Looks like the output voltage
needs to be adjusted so that a signal
will still be valid when it reaches an
input even if there's noise.

Figure 13.

14
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There’s one more issue we need to deal with before finalizing our signaling specification. Consider
the following combinational system where the upstream combinational device on the left is trying to
send a digital 0 to the downstream combinational device on right. The upstream device is generating
an output voltage just slightly below V1, which, according to our proposed signaling specification,
qualifies as the representation for a digital 0.

Now suppose some electrical noise slightly changes the voltage on the wire so that the voltage de-
tected on the input of the downstream device is slightly above 171,, i.e., the received signal no longer
qualifies as a valid digital input and the combinational behavior of the downstream device is no longer
guaranteed.

Oops, our system is behaving incorrectly because of some small amount of electrical noise. Just the
sort of flaky behavior we are hoping to avoid by adopting a digital systems architecture.

One way to address the problem is to adjust the signaling specification so that outputs have to obey
tighter bounds than the inputs, the idea being to ensure that valid output signals can be affected by
noise without becoming invalid input signals.

Where Does Noise Come From?

Where Does Noise Come From?

Parasitic resistance, inductance, capacitance
— IR drop, L(dI/dt) drop, LC ringing from current steps

Integrated circuit

Power supply

/ \}
L’s from chip leads R’s and C’s from Current loads from on-
Aluminum wiring layers chip devices

Imprecision of component values
— Manufacturing variations, allowable tolerances

*« Environmental effects
— External EM fields, temperature variations, etc.

Figure 14,

Can we avoid the problem altogether by somehow avoiding noise? A nice thought, but not a goal that
we can achieve if we’re planning to use electrical components. Voltage noise, which we’ll define as
variations away from nominal voltage values, comes from a variety of sources.

+ Noise can be caused by electrical effects such as IR drops in conductors due to Ohm’s law,

15
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capacitive coupling between conductors, and L(dI/dt) effects caused by inductance in the
component’s leads and changing currents.

+ Voltage deviations can be caused manufacturing variations in component parameters from their
nominal values that lead to small differences in electrical behavior device-to-device.

« Voltages can be effected by environmental factors such as thermal noise or voltage effects from
external electromagnetic fields.

The list goes on! Note that in many cases, noise is caused by normal operation of the circuit or is an
inherent property of the materials and processes used to make the circuits, and so is unavoidable.
However, we can predict the magnitude of the noise and adjust our signaling specification appropriately
- let’s see how this would work.

Noise Margins

Needed: Noise Margins!

Proposed fix: separate specifications for inputs and outputs
digital output: “0” < Vg, “1” = Vgy
«digital input: “0” < Vy, “1” = Vi
*VoL < Vi <V <Vou
VALID INPUT REPRESENTATIONS\‘

—

Valid
«Q”

Forbidden Zone i I Valhd

L T
VOL VI L VI H OH
N ~ A

T~ NOISE MARGINS —

volts

VALID OUTPUT REPRESENTATIONS

A combinational device accepts marginal inputs and
provides unquestionable outputs (to leave room for noise).

Figure 15.

Our proposed fix to the noise problem is to provide separate signaling specifications for digital inputs
and digital outputs. To send a 0, digital outputs must produce a voltage less than or equal to Vo1, and
to send a 1, produce a voltage greater than or equal to V. So far this doesn’t seem very different
than our previous signaling specification...

The difference is that digital inputs must obey a different signaling specification. Input voltages less
than or equal to 131, must be interpreted as a digital 0 and input voltages greater than or equal to Viy
must be interpreted as a digital 1.

The values of these four signaling thresholds are chosen to satisfy the constraints shown here. Note
that Vpy, is strictly greater than V1, and Viy is strictly less than V. The gaps between the input and

16
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output voltage thresholds are called the noise margins. The noise margins tell us how much noise
can be added to a valid 0 or a valid 1 output signal and still have the result interpreted correctly at the
inputs to which it is connected. The smaller of the two noise margins is called the noise immunity of
the signaling specification. Our goal as digital engineers is to design our signaling specifications to
provide as much noise immunity as possible.

Combinational devices that obey this signaling specification work to remove the noise on their inputs
before it has a chance to accumulate and eventually cause signaling errors. The bottom line: digital
signaling doesn’t suffer from the problems we saw in our earlier analog signaling example!

Voltage Transfer Characteristic

A Buffer

A simple combinational device: 0o0—1>—0 1-1>—1
A%

out

Voltage Transfer Characteristic (VTC):
Plot of V; vs. V;, where each
measurement is taken after any
transients have died out.

VOH

Note: VTC does not tell you
anything about how fast a device
is — it measures static behavior

v not dynamic behavior
in

VOL

VIL VIH

Static Discipline requires that the VTC avoid the shaded regions
(aka “forbidden zones”), which correspond to valid inputs but
tnvalid outputs.

Figure 16.

Let’s make some measurements using one of the simplest combinational devices: a buffer. A buffer
has a single input and single output, where the output will be driven with the same digital value as the
input after some small propagation delay. This buffer obeys the static discipline - that’s what it means
to be combinational - and uses our revised signaling specification that includes both low and high
noise margins.

The measurements will be made by setting the input voltage to a sequence of values ranging from
0V up to the power supply voltage. After setting the input voltage to a particular value, we’ll wait for
the output voltage to become stable, i.e., we’ll wait for the propagation delay of the buffer. We’ll plot
the result on a graph with the input voltage on the horizontal axis and the measured output voltage
on the vertical axis. The resulting curve is called the voltage transfer characteristic of the buffer. For
convenience, we’ve marked our signal thresholds on the two axes.
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Before we start plotting points, note that the static discipline constrains what the voltage transfer
characteristic must look like for any combinational device. If we wait for the propagation delay of the
device, the measured output voltage must be a valid digital value if the input voltage is a valid digital
value - “valid in, valid out”. We can show this graphically as shaded forbidden regions on our graph.
Points in these regions correspond to valid digital input voltages but invalid digital output voltages. So
if we’re measuring a legal combinational device, none of the points in its voltage transfer characteristic
will fall within these regions.

Okay, back to our buffer: setting the input voltage to a value less than the low input threshold V1,
produces an output voltage less than Vo1, as expected - a digital 0 input yields a digital 0 output.
Trying a slightly higher but still valid 0 input gives a similar result. Note that these measurements don’t
tell us anything about the speed of the buffer, they are just measuring the static behavior of the device,
not its dynamic behavior.

If we proceed to make all the additional measurements, we get the voltage transfer characteristic of
the buffer, shown as the black curve on the graph. Notice that the curve does not pass through the
shaded regions, meeting the expectations we set out above for the behavior of a legal combinational
device.

VTC Deductions

Voltage Transfer Characteristic
vuut

VOH

VoL

VIL VIH
1) Note the VTC can do anything when V; < Viy < Viu.

2) Note that the center white region is taller than it is
wide (Vog-VoL > Vig-Vi). Net result: combinational
devices must have GAIN > 1 and be NONLINEAR.

Figure 17.

There are two interesting observations to be made about voltage transfer characteristics.

Let’s look more carefully at the white region in the center of the graph, corresponding to input voltages
in the range Vi1, to Vip. First note that these input voltages are in the forbidden zone of our signaling
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specification and so a combinational device can produce any output voltage it likes and still obey the
static discipline, which only constrains the device’s behavior for valid inputs.

Second, note that the center white region bounded by the four voltage thresholds is taller than it is
wide. This is true because our signaling specification has positive noise margins, so Vog — Vot is
strictly greater than Vi — Vir.. Any curve passing through this region - as the VTC must - has to have
some portion where the magnitude of the slope of the curve is greater than 1. At the point where the
magnitude of the slope of the VTC is greater than one, note that a small change in the input voltage
produces a larger change in the output voltage. That’s what it means when the magnitude of the slope
is greater than 1. In electrical terms, we would say the device as a gain greater than 1 or less than -1,
where we define gain as the change in output voltage for a given change in input voltage.

If we’re considering building larger circuits out of our combinational components, any output can
potentially be wired to some other input. This means the range on the horizontal axis (Vix) has to
be the same as the range on the vertical axis (Vour), i.e., the graph of VTC must be square and the
VTC curve fits inside the square. In order to fit within the square bounds, the VTC must change slope
at some point since we know from above there must be regions where the magnitude of the slope
is greater than 1 and it can’t be greater than 1 across the whole input range. Devices that exhibit a
change in gain across their operating range are called nonlinear devices.

Together these observations tell us that we cannot use only linear devices such as resistors, capacitors
and inductors, to build combinational devices. We’ll need nonlinear devices with gain > 1. Finding
such devices is the subject of the next chapter.

VTC Example

Can This Be a Combinational Inverter?

Suppose that you measured the voltage transfer curve of the device
shown below. Can we find a signaling specification that would allow
this device to be a combinational inverter?

The device must be able to actually
produce the desired output level. Thus,
Vg, can be no lower than 0.5 V.

Try VgL = 0.5V

Vj;; must be high enough to produce Vg,
Try Vig =3V

Now, find noise margin N and compute
Vou =V + N
Vi =VgL+N

o | 2 4 a s Then verify that Vgyr = Vo, when Vi < V..
VIL le
Try N =0.5V

Device is a combinational inverter when V;=0.5, V=1, V=3, Vo4=3.5

Figure 18.
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Let’s look at a concrete example. This graph shows the voltage transfer characteristic for a particular
device and we’re wondering if we can use this device as a combinational inverter. In other words, can
we pick values for the voltage thresholds Vor,, Vir, Vi and Vop so that the shown VTC meets the
constraints imposed on a combinational device?

Aninverter outputs a digital 1 when itsinput is a digital 0 and vice versa. In fact this device does produce
a high output voltage when its input voltage is low, so there’s a chance that this will work out.

The lowest output voltage produced by the device is 0.5V, so if the device is to produce a legal digital
output of 0, we have to choose Vg, to be at least 0.5V.

We want the inverter to produce a valid digital 0 whenever its input is valid digital 1. Looking at the
VTC, we see that if the input is higher than 3V, the output will be less than or equal to Vo1, so let’s set
Vi to 3V. We could set it to a higher value than 3V, but we’ll make it as low as possible to leave room
for a generous high noise margin.

That takes care of two of the four signal thresholds, Vo1, and Viy. The other two thresholds are related
to these two by the noise margin N as shown by these two equations. Can we find a value for N such
that Vopyr > Vo when Vi < Vir? If we chose N = 0.5V, then the formulas tell us that Vi, = 1V
and Vo = 3.5V. Plotting these thresholds on the graph and adding the forbidden regions, we see
that happily the VTC s, in fact, legal!

So we can use this device as a combinational inverter if we use the signaling specification with Vo, =
0.5V, Vi, =1V, Vig = 3V and Vo = 3.5V. We’re good to go!

Summary

Summary

* Use voltages to encode information
* “Digital” encoding
« valid voltage levels for representing “0” and “1”
+ forbidden zone avoids mistaking “0” for “1” and vice versa
* gives rise to notion of signal VALIDITY.
* Noise
* Want to tolerate real-world conditions: NOISE.
* Key: tougher standards for output than for input
* devices must have gain and have a non-linear VTC
* Combinational devices
* Each logic family has Tinkertoy-set simplicity, modularity
* predictable composition: “parts work — whole thing
works”
* static discipline
« digital inputs, outputs; restore marginal input voltages
* complete functional spec
¢ valid inputs lead to valid outputs in bounded time

Figure 19.
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