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Computation Structures - Lecture 1

Course Contents

In order to build circuits that manipulate, transmit or store information, we are going to need some
engineering tools to help us determine if we’re choosing a good representation for the information -
that’s the subject of this chapter. We'll study different ways of encoding information as bits and learn
the mathematics that help us determine if our encoding is a good one. We’ll also look into what we
can do if our representation gets corrupted by errors - it would be nice to detect that something bad
has happened and possibly even correct the problem.

What is Information?

What is “Information”?

Information, n. Data communicated or received that
resolves uncertainty about a particular fact or
circumstance.

Example: you receive some data about a card drawn
at random from a 52-card deck. Which of the
following data conveys the most information? The
least?

¢ # of possibilities remaining

13 A. The card is a heart

51 B. The card is not the Ace of spades
12 C. The card is a face card (J, Q, K)

1 D. The card is the “suicide king” i - I

Figure 1.

Let’s start by asking “what is information?” From our engineering perspective, we’ll define information
as data communicated or received that resolves uncertainty about a particular fact or circumstance. In
other words, after receiving the data we’ll know more about that particular fact or circumstance. The
greater the uncertainty resolved by the data, the more information the data has conveyed.

Let’s look at an example: a card has been chosen at random from a normal deck of 52 playing cards.
Without any data about the chosen card, there are 52 possibilities for the type of the card. Now suppose
you receive one of the following pieces of data about the choice.

« You learn the suit of the card is Heart. This narrows the choice to down to one of 13 cards.

+ You learn instead the card is not the Ace of Spades. This still leaves 51 cards that it might be.

+ You learn instead that the card is a face card, that is, a Jack, Queen or King. So the choice is one
of 12 cards.
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« You learn instead that the card is the suicide king. This is actually a particular card: the King
of Hearts where the king is sticking the sword through his head. No uncertainty here! We know
exactly what the choice was.

Which of the possible pieces of data conveys the most information? In other words, which data resolves
the most uncertainty about the chosen card? Similarly, which data conveys the least amount of
information? We’ll answer these questions in the next section.

Quantifying Information

Quantifying Information
(Claude Shannon, 1948)

Given discrete random variable X
* N possible values: X1, X2, .., XN
« Associated probabilities: Pi1, P2, -.. PN

Information received when learning that choice

was X;:
Information is measured in
bits (binary digits) =

) number of 0/1s required
to encode choice(s)

I(xi) = 10g2 (L

i

4

1/p; is proportional to the . €
uncertainty of choice x,.

Figure 2.

Mathematicians like to model uncertainty about a particular circumstance by introducing the concept
of a random variable. For our application, we’ll always be dealing with circumstances where there are
a finite number N of distinct choices, so we’ll be using a discrete random variable X that can take on
one of the N possible values from the set {x1, z2, ..., x5 }. The probability that X will take on the value
x1 is given by the probability p1, the value x5 by probability p2, and so on. The smaller the probability,
the more uncertain it is that X will take on that particular value.

Claude Shannon, in his seminal work on the theory of information, defined the information received
when learning that X had taken on the value z; as

I(z;) = log, (;) bits. (1)

Note that the uncertainty of a choice is inversely proportional its probability, so the term inside of the
log is basically the uncertainty of that particular choice. We use the log, to measure the magnitude of
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the uncertainty in bits where a bit is a quantity that can take on the value 0 or 1. Think of the information
content as the number of bits we would require to encode this choice.

Information Conveyed by Data

Information Conveyed by Data

Even when data doesn’t resolve all the uncertainty

1
I(data) = logz( ) e.g., I(heart) = 10‘52(131] = 2 bits

52

data

Common case: Suppose you'’re faced with N equally
probable choices, and you receive data that
narrows it down to M choices. The probability that
data would be sent is M-(1/N) so the amount of
information you have received is

I(data) = log, (m) =log, (%) bits

Figure 3.

Suppose the data we receive doesn’t resolve all the uncertainty. For example, when earlier we received
the data that the card was a Heart: some of uncertainty has been resolved since we know more about
the card than we did before the receiving the data, but we don’t yet know the exact card, so some
uncertainty still remains. We can slightly modify Equation (1) as follows

I(data) = log, ( ) bits. (2)

DPdata

In our example, the probability of learning that a card chosen randomly from a 52-card deck is a Heart
is 13/52 = 0.25, the number of Hearts over the total number of choices. So the information content is

computed as

1 1
I(heart) = lo ( ) =lo () = 2 bits
( ) g2 Phoart g2 0.95

This example is one we encounter often: we receive partial information about N equally-probable
choices (each choice has probability 1/N) that narrows the number of choices down to M. The
probability of receiving such information is M (1/N), so the information content is

1 N
I(N choices — M choices) = log, (]\4(1/N)> = log, (M) bits.
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Example: Information Content

Example: Information Content

Examples:

* information in one coin flip:

N= 2 M= 1 Info content= log,(2/1) = 1 bit
* card drawn from fresh deck is a heart:

N= 52 M= 13 Info content= |og,(52/13) = 2 bits
» roll of 2 dice:

N= 36 M= 1 Info content= log,(36/1) = 5.17

17 bits 22? K

Figure 4.

Let’s look at some examples.

« If we learn the result (heads or tails) of a flip of a fair coin, we go from 2 choices to a single choice.
So, using our equation, the information received is log,(2/1) = 1 bit. This makes sense: it would
take us one bit to encode which of the two possibilities actually happened, say, 1 for heads and
0 for tails.

+ Reviewing the example from earlier, learning that a card drawn from a fresh deck is a Heart gives
us log,(52/13) = 2 bits of information. Again this makes sense: it would take us two bits to
encode which of the four possible card suits had turned up.

« Finally consider what information we get from rolling two dice, one red and one green. Each die
has six faces, so there are 36 possible combinations. Once we learn the exact outcome of the roll,
we’ve received log,(36/1) = 5.17 bits of information.

Hmm. What do those fractional bits mean? Our digital system only deals in whole bits! So to encode a
single outcome, we’d need to use 6 bits. But suppose we wanted to record the outcome of 10 successive
rolls. At 6 bits/roll we would need a total of 60 bits. What this formula is telling us is that we would
need not 60 bits, but only 52 bits to unambiguously encode the results. Whether we can come up with
an encoding that achieves this lower bound is an interesting question that we’ll take up later in this
chapter.
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Probability and Information Content

Probability & Information Content

Information

®” content
data Pdata logy(1/Pgata)
a heart 13/52 | 2 bits
not the Ace of spades 51/52 | 0.028 bits
a face card (J, Q, K) 12/52 2.115 bits
the “suicide king” 1/52 5.7 bits

— Shannon’s definition for information
content lines up nicely with my
intuition: I get more information
when the data resolves more
uncertainty about the randomly
selected card.

Figure 5.

To wrap up, let’s return to our initial example. Here’s a table showing the different choices for the data
received, along with the probability of that event and the computed information content.

The results line up nicely with our intuition: the more uncertainty is resolved by the data, the more
information we have received. We can use Equation (2) to provide an exact answer to the questions at
the end of the first slide. We get the most information when we learn that the card is the suicide King
and the least information when we learn that the card is not the Ace of Spades.
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Entropy
Entropy
In information theory, the entropy H(X) is the
average amount of information contained in each
piece of data received about the value of X:
N
1
H(X)=E(I(X))=Y p,-log, (;)
i=1 i
Example: X={A, B, C, D}
hoice; : l
e o Toaltin] o0 - /3t 59) -
/3 11,58 bits (1/2)(1) +
Rl 1/2 1 bit 2(1/12)(3.58)
“c 1/12 | 3.58 bits = 1.626 bits
“D” 1/12 | 3.58 bits
Figure 6.

In the next section we’re going to start our discussion on how to actually engineer the bit encodings
we’ll use to encode information, but first we’ll need a way to evaluate the efficacy of an encoding. The
entropy, H (X), of a discrete random variable X is average amount of information received when
learning the value of X:
1
H(X) = BU(X) = Y piloss (o) ®
3 (2
Shannon followed Boltzmann’s lead in using H, the upper-case variant of the Greek letter n (eta), for
“entropy” since E was already used for “expected value,” the mathematicians’ name for “average”.
We compute the expected value in the usual way: we take the weighted sum, where the amount of

information received when learning of a particular choice i, log2(1/p;) is weighted by the probability
of that choice actually happening.

Here’s an example. We have a random variable that can take on one of four values { A, B, C, D}. The
probabilities of each choice are shown in the table, along with the associated information content.

Now we’ll compute the entropy using Equation (3):

H(X) = (1/3)(1.58) 4 (1/2)(1) 4 (1/12)(3.58) + (1/12)(3.58)
= 1.626 bits.

Thisis telling us that a clever encoding scheme should, on the average, be able to do better than simply
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encoding each symbol using 2 bits to represent which of the four possible values is next. Food for
thought! We’ll discuss this further in our discussion of variable-length encodings.

Meaning of Entropy

Meaning of Entropy

Suppose we have a data sequence describing the
values of the random variable X.

Average number of bits used to transmit choice

f This is perfect!

A ™ This is okay,
K Just inefficient

| bits
H(X)

Figure 7.

So, what is the entropy telling us? Suppose we have a sequence of data describing a sequence of values
of the random variable X.

If, on the average, we use less than H(X) bits transmit each piece of data in the sequence, we will
not be sending enough information to resolve the uncertainty about the values. In other words, the
entropy is a lower bound on the number of bits we need to transmit. Getting less than this number of
bits wouldn’t be good if the goal was to unambiguously describe the sequence of values - we’d have
failed at our job!

On the other hand, if we send, on the average, more than H (X)) bits to describe the sequence of values,
we will not be making the most effective use of our resources, since the same information might have
been able to be represented with fewer bits. This okay, but perhaps with some insights we could do
better.

Finally, if we send on the average exactly H(X) bits then we’d have the perfect encoding. Alas, perfec-
tion is, as always, a tough goal, so most of the time we’ll have to settle for getting close.
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Encodings
Encodings
An encoding is an unambiguous mapping between
bit strings and the set of possible data.
Encoding for each symbol Encoding for
“ABBA”
A B C D
00 01 10 11 00 01 01 00
01 1 000 |001 011101
ABBA?
x o |1 10 |11 0110 Foc
Figure 8.

Next we turn our attention to encoding data as sequences of ®’sand 1’s, i.e., a string of bits. An encoding
is an unambiguous mapping between bit strings and the members of the set of data to be encoded.

For example, suppose we have a set of four symbols {A,B,C,D} and we want to use bit strings to
encode messages constructed of these symbols, e.g., ABBA. If we choose to encode the message one
character at a time, our encoding would assign a unique bit string to each symbol. The figure above
shows some trial encodings.

Since we have four symbols, we might choose a unique two-bit string for each:

Symbol Encoding

00

10

A

B 01
C

D 11

This is called a fixed-length encoding since the bit strings used to represent the symbols all have the
same length. The encoding for the message ABBA would be 80 01 01 00. And we can run the process

backwards: given a bit string and the encoding key, we can look up the next bits in the bit string, using
the key to determine the symbol they represent. 80 would be decoded as A, ®1 as B and so on.
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As shown in the second encoding in the table, we can use a variable-length encoding, where the
symbols are encoded using bit strings of different lengths.

Symbol Encoding

01

A

B 1
C 000

D 001

ABBA would be encoded as®1 1 1 01. We'll see that carefully constructed variable-length encodings
are useful for the efficient encoding of messages where the symbols occur with different probabilities.

Finally consider the third encodingin the table. We have to be careful that the encoding is unambiguous!
Using this encoding, ABBA would be encoded as® 1 1 0. Looking good since that encoding is shorter
than either of the previous two encodings. Now let’s try to decode this bit string - oops. Using the
encoding key, we can unfortunately arrive at several decodings: ABBA of course, but also ADA or ABC
depending on how we group the bits. This attempt at specifying an encoding has failed since the
message cannot be interpreted unambiguously.

Encodings as Binary Trees

Encodings as Binary Trees

It’s helpful to represent an unambiguos encoding
as a binary tree with the symbols to be encoded as
the leaves. The labels on the path from the root to
the leaf give the encoding for that leaf.

Encoding Binary tree
BAA
A—11 B‘ ;)(\1 !K —
‘e Y )
C—100 0/ N\l A h . }
D101 C D s

Figure 9.

10
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Graphically we can represent an unambiguous encoding as a binary tree, labeling the branches from
each tree node with ® and 1, placing the symbols to be encoded as the leaves of the tree. If you build a
binary tree for a proposed encoding and find that there are no symbols labeling interior nodes and
exactly one symbol at each leaf, then your encoding is good to go!

For example, consider the encoding shown on the left of the figure. It just takes a second to draw the
corresponding binary tree. The symbol B is distance 1 from the root of the tree, along an arc labeled @.
A is distance two, and C and D are distance 3.

If we receive an encoded message, e.g., 01111, we can decode it by using successive bits of the encoding
to identify a path from the root of tree, descending step-by-step until we come to leaf, then repeating
the process starting at the root again, until all the bits in the encoded message have been consumed.
So the message from the sheep is decoded as follows:

+ 0 takes us from the root to the leaf B, which is our first decoded symbol.
« Then 11 takes us to A and
+ the next 11 resultsin a second A.

The final decoded message, BAA, is not totally unexpected, at least from an American sheep.

Fixed-length Encodings

Fixed-length Encodings

If all choices are equally likely (or we have no reason
to expect otherwise), then a fixed-length code is often
used. Such a code will use at least enough bits to

represent the information content.
0 1 , All leaves have the same depth!

Note that the entropy for N equally-
probable symbols is

0 1 0 1 . 1
A B C D Z(%v)l"g: [q] =logz(N)
Examples: Fixed-length are often

a little inefficient.. &

* 4-bit binary-coded decimal (BCD) digits logz(.10)=3.322
» 7-bit ASCII for printing characters log,(94)=6.555

Figure 10.

If the symbols we are trying to encode occur with equal probability (or if we have no a priori reason to
believe otherwise), then we’ll use a fixed-length encoding, where all leaves in the encoding’s binary
tree are the same distance from the root. Fixed-length encodings have the advantage of supporting

11
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random access, where we can figure out the Nth symbol of the message by simply skipping over the
required number of bits. For example, in a message encoded using the fixed-length code shown here,
if we wanted to determine the third symbol in the encoded message, we would skip the 4 bits used to
encode the first two symbols and start decoding with the 5th bit of message.

Mr. Blue is telling us about the entropy for random variables that have N equally-probable outcomes.
In this case, each element of the sum in the entropy formula is simply (1/N) - log,(IN), and, since there
are N elements in the sequence, the resulting entropy is just log, (V).

Let’s look at some simple examples. In binary-coded decimal, each digit of a decimal number is
encoded separately. Since there are 10 different decimal digits, we’ll need to use a 4-bit code to
represent the 10 possible choices. The associated entropy is log,(10), which is 3.322 bits. We can see
that our chosen encoding is inefficient in the sense that we’d use more than the minimum number
of bits necessary to encode, say, a number with 1000 decimal digits: our encoding would use 4000
bits, although the entropy suggests we might be able to find a shorter encoding, say, 3400 bits, for
messages of length 1000.

Another common encoding is ASCII, the code used to represent English text in computing and commu-
nication. ASCII has 94 printing characters, so the associated entropy is log,(94) or 6.555 bits, so we
would use 7 bits in our fixed-length encoding for each character.

Encoding Postive Integers

Encoding Positive Integers

It is straightforward to encode positive integers as a
sequence of bits. Each bit is assigned a weight.
Ordered from right to left, these weights are
increasing powers of 2. The value of an N-bit number
encoded in this fashion is given by the following
formula:

N1 211 2]0 29 28 27 26 25 24 23 22 21 2(]

v=232'b |o|1]|1]1]1]|1]|0|1]|0|0]|0O]|0O

V = 0%211 + 1%210 + 1*29 +
1024 + 512 + 256 +128 + 64 + 16
2000

Smallest number: O Largest number: 2N-1

Figure 11.

One of the most important encodings is the one we use to represent numbers. Let’s start by thinking
about a representation for unsigned integers, numbers starting at 0 and counting up from there.

12
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Drawing on our experience with representing decimal numbers, i.e., representing numbers in base 10
using the 10 decimal digits, our binary representation of numbers will use a base 2 representation
using the two binary digits.

The formula for converting an N-bit binary representation of a numeric value into the corresponding
integer is shown below - just multiply each binary digit by its corresponding weight in the base-2
representation. For example, here’s a 12-bit binary number, with the weight of each binary digit shown
above. We can compute itsvalue as 0 - 2! plus 1 - 2% plus 1 - 29, and so on. Keeping only the non-zero
terms and expanding the powers-of-two gives us the sum

1024 + 512 + 256 + 128 + 64 + 16

which, expressed in base-10, sums to the number 2000.

With this N-bit representation, the smallest number that can be represented is 0 (when all the binary
digits are 0) and the largest number is 2" — 1 (when all the binary digits are 1). Many digital systems
are designed to support operations on binary-encoded numbers of some fixed size, e.g., choosing a
32-bit or a 64-bit representation, which means that they would need multiple operations when dealing
with numbers too large to be represented as a single 32-bit or 64-bit binary string.

Hexadecimal Notation

Hexademical Notation

Long strings of binary digits are tedious and error-prone to
transcribe, so we usually use a higher-radix notation,
choosing the radix so that it’s simple to recover the original
bits string.

A popular choice is transcribe numbers in base-16, called
hexadecimal, where each group of 4 adjacent bits are
representated as a single hexadecimal digit.

11 510 59 48 A7 56 5 A% A3 A2 ol
Hexadecimal - base 16 2 2~ 2~ 2° 2" 2° 2° 2% 2° 2° 2 of

0000 - 0 1000 - 8
0001 - 1 1001 - 9 ol1|1|1|1|1|0|1|0|0O|O]|O
0010 - 2 1010 - A :

0011 - 3 1011 - B ¥ ¥ ‘

0100 - 4 1100 - C

0101 - 5 1101 - D 7 D 0

0110 - 6 1110 - E

0111 - 7 1111 - F 0b011111010000 = Ox7DO

Figure 12.

Long strings of binary digits are tedious and error-prone to transcribe, so let’s find a more convenient
notation, ideally one whereit will be easy to recover the original bit string without too many calculations.
A good choice is to use a representation based on a radix that’s some higher power of 2, so each digit

13
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in our representation corresponds to some short contiguous string of binary bits. A popular choice
these days is a radix-16 representation, called hexadecimal or “hex” for short, where each group of 4
binary digits is represented using a single hex digit.

Since there are 16 possible combinations of 4 binary bits, we’ll need 16 hexadecimal digits: we’ll
borrow the ten digits ® through 9 from the decimal representation, and then simply use the first six
letters of the alphabet, A through F for the remaining digits. The translation between 4-bit binary and
hexadecimal is shown in the table to the left below.

To convert a binary number to hex, group the binary digits into sets of 4, starting with the least-
significant bit (that’s the bit with weight 2°). Then use the table to convert each 4-bit pattern into the
corresponding hex digit:

+ 0000 is the hex digit 0,
+ 1101 is the hex digitD, and
+ 0111 isthe hex digit 7.

The resulting hex representation is 7D®. To prevent any confusion, we’ll use a special prefix 0x to
indicate when a number is being shown in hex, so we’d write x7D0 as the hex representation for the
binary number 8111 1101 0000. This notation convention is used by many programming languages
for entering binary bit strings.

Encoding Signed Integers

Encoding Signed Integers

We use a signed magnitude representation for
decimal numbers, encoding the sign of the number
(using “+” and “-”) separately from its magnitude
(using decimal digits).

We could adopt that approach for binary

representations:

i N bits i
~l1]1]1]1]1]1]o]1|o]o]o]o |
“0” for *+” Range: — (2N1 - 1) to 2N1 -1 -2000
“1” for “-”

But: two representations for 0 (+0, -0) and we’d need
different circuitry for addition and subtraction

Figure 13.

14
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Our final challenge is figuring out how to represent signed integers, e.g., what should be our represen-
tation for the number -2000?

In decimal notation, the convention is to precede the number with a “+” or “-” to indicate whether it’s
positive or negative, usually omitting the “+” to simplify the notation for positive numbers. We could
adopt a similar notation - called signed magnitude - in binary, by allocating a separate bit at the front
of the binary string to indicate the sign, say “0” for positive numbers and “1” for negative numbers. So
the signed-magnitude representation for -2000 would be an initial “1” to indicate a negative number,
followed by the representation for 2000 (as described on the previous two slides).

However there are some complications in using a signed-magnitude representation. There are two
possible binary representations for zero: “+0” and “-0”. This makes the encoding slightly inefficient
but, more importantly, the circuitry for doing addition of signed-magnitude numbers is different than
the circuitry for doing subtraction. Of course, we’re used to that - in elementary school we learned one
technique for addition and another for subtraction.

Two’s Complement Encoding

Two’s Complement Encoding

In a two’s complement encoding, the high-order bit of
the N-bit representation has negative weight:

| N bits {

Range: — 2M¥1 to 2N1-1

72.\1—1 2N—2 LR 23 22 21 20

o~

“sign bit”

* Negative numbers have “1” in the high-order bit

+ Most negative number: 10...0000 -2N-!

+ Most positive number: 01...1111 +2N-1 - 1
« If all bits are 1: 11...1111 -1
» If all bits are O: 00...0000 0O

Figure 14.

To keep the circuitry simple, most modern digital systems use the two’s complement binary representa-
tion for signed integers. In this representation, the high-order bit of an N-bit two’s complement number
has a negative weight, as shown in the figure. Thus all negative numbers have a 1 in the high-order
bit and, in that sense, the high-order bit is serving as the sign bit - if it’s 1, the represented number is
negative.

15
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The most negative N-bit number has a 1-bit in the high-order position, representing the value —2V =1,
The most positive N-bit number has a 0 in the negative-weight high-order bit and 1’s for all the positive-
weight bits, representing the value 2V —! — 1. This gives us the range of possible values, e.g., in an 8-bit
two’s complement representation, the most negative number is —27 = —128 and the most positive
numberis2” — 1 = 127.

If all N bits are 1, think of that as the sum of the most negative number with the most positive number,
i.e., —2N~149N=1_1 which equals-1. And, of course, if all N bits are 0, that’s the unique representation
of 0.

More Two’s Complement

More Two’s Complement

* Let’s see what happens when we add the N-bit
values for -1 and 1, keeping an N-bit answer:

11..1111 Just use ordinary binary addition, even
 when one or both of the operands are
+M negative. 2's complement is perfect for
0000000 N-bit arithmetic!

* To compute B-A, we’ll just use addition and
compute B+(-A). But how do we figure out the
representation for -A?

A+(-A)=0=1 + -1

A= (-1-A)+1 j
=oArd oy

To negate a two's
complement value: bitwise
complement and add 1.

Figure 15.

Let’s see what happens when we add the N-bit values for -1 and 1, keeping an N-bit answer. In the
rightmost column, 1 plus 1is 0, carry the 1. In the second column, the carry of 1 plus 1 plus 0 is 0, carry
the 1. And so on - the result is all zero’s, the representation for 0... perfect! Notice that we just used
ordinary binary addition, even when one or both of the operands are negative. Two’s complement is
perfect for N-bit arithmetic!

To compute B - A, we can just use addition and compute B + (—A). So now we just need to figure out
the two’s complement representation for -A, given the two’s complement representation for A. Well,
we know that A + (—A) = 0 and using the example above, we can rewrite 0 as 1 + (—1). Reorganizing
terms, we see that -A equals 1 plus the quantity (—1) — A. As we saw above, the two’s complement
representation for -1 is all 1-bits, so we can write that subtraction as all 1’s minus the individual bits of
A: Ag, Aq,... upto Ay_q. Ifaparticularbit A;is0,then1 — A; = 1andif A;is1,then1 — A; = 0. Soin
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each column, the result is the bitwise complement of A;, which we’ll write using the C-language bitwise
complement operator tilde. So we see that -A equals the bitwise complement of A plus 1. Ta-dah!

To practice your skill with two’s complement, try your hand at the following exercises. All you need to
remember is how to do binary addition and two’s complement negation (which is bitwise complement
and add 1).

Variable-length Encodings

Variable-length Encodings

We’d like our encodings to use bits efficiently:

GOAL: When encoding data we’d like to match
the length of the encoding to the information
content of the data.

On a practical level this means:

« Higher probability — shorter encodings

+ Lower probability — _longer  encodings

Such encodings are termed variable-length
encodings.

Figure 16.

Fixed-length encodings work well when all the possible choices have the same information content, i.e.,
all the choices have an equal probability of occurring. If those choices don’t have the same information
content, we can do better. To see how, consider the expected length of an encoding, computed by
considering each z; to be encoded, and weighting the length of its encoding by p;, the probability of
its occurrence. By “doing better” we mean that we can find encodings that have a shorter expected
length than a fixed-length encoding. Ideally we’d like the expected length of the encoding for the z; to
match the entropy H (X), which is the expected information content.

We know that if x; has a higher probability (i.e., a larger p;), that is has a smaller information content,
so we’d like to use shorter encodings. If z; has a lower probability, then we’d use a longer encoding.

So we’ll be constructing encodings where the z; may have different length codes - we call these
variable-length encodings.
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Example: Variable-length Encoding

Example
choice; bi encoding High probability,
“«pA” 1/3 11 Less information
= 115 T o ]
acn 1/12 100 Low p‘robabilitfv,
More information
“D” 1/12 101

Entropy: H(X) = 1.626 bits

Expected length of this encoding:
(2)(1/3) + (1)(1/2) + (3)(1/12)(2) = 1.667 bits
Expected length for 1000 symbols:
« With fixed-length, 2 bits/symbol = 2000 pjts
+ With variable-length code = 1667  bits
« Lower bound (entropy) = 1626  bits

Figure 17.

Here’s an example we’ve seen before. There are four possible choices to encode (A, B, C, and D), each
with the specified probability. The table shows a suggested encoding where we’ve followed the advice
from the previous slide: high-probability choices that convey little information (e.g., B) are given shorter
encodings, while low-probability choices that convey more information (e.g., C or D) are given longer
encodings.

Let’s diagram this encoding as a binary tree. Since the symbols all appear as the leaves of the tree, we
can see that the encoding is unambiguous. Let’s try decoding the following encoded data. We’ll use
the tree as follows: start at the root of the tree and use bits from the encoded data to traverse the tree
as directed, stopping when we reach a leaf.

Starting at the root, the first encoded bit is 0, which takes us down the left branch to the leaf B. So B is
the first symbol of the decoded data. Starting at the root again, 1 takes us down the right branch, ® the
left branch from there, and ® the left branch below that, arriving at the leaf C, the second symbol of the
decoded data. Continuing on: 11 gives us A, ® decodes as B, 11 gives us A again, and, finally, 101 gives
usD. The entire decoded message is BCABAD.

The expected length of this encoding is easy to compute: the length of A’s encoding (2 bits) times its
probability (1/3), plus the length of B’s encoding (1 bit) times 1/2, plus the contributions for C and D,
each 3 times 1/12. This adds up to 1 and 2/3 bits.

How did we do? If we had used a fixed-length encoding for our four possible symbols, we’'d have needed
2 bits each, so we’d need 2000 bits to encode 1000 symbols. Using our variable-length encoding, the
expected length for 1000 symbols would be 1667. The lower bound on the number of bits needed to
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encode 1000 symbols is 1000 times the entropy H (X ), which is 1626 bits, so the variable-length code
got us closer to our goal, but not quite all the way there.

Could another variable-length encoding have done better? In general, it would be nice to have a
systematic way to generate the best-possible variable-length code, and that’s the subject of the next

video.

Huffman’s Algorithm

Huffman’s Algorithm

Given a set of symbols and their probabilities,
constructs an optimal variable-length encoding.

Huffman’s Algorithm: Example:

*Build subtree using 2 i B 1 /2, i s
symbols with lowest p;

*At each step choose two
symbols/subtrees with lowest
P;>» combine to form new
subtree

*Result: optimal tree built
from the bottom-up

Figure 18.

Given a set of symbols and their probabilities, Huffman’s Algorithm tells us how to construct an optimal
variable-length encoding. By “optimal” we mean that, assuming we’re encoding each symbol one-at-a-
time, no other variable-length code will have a shorter expected length.

The algorithm builds the binary tree for the encoding from the bottom up. Start by choosing the two
symbols with the smallest probability (which means they have highest information content and should
have the longest encoding). If anywhere along the way, two symbols have the same probability, simply
choose one arbitrarily. In our running example, the two symbols with the lowest probability are C and
D.

Combine the symbols as a binary subtree, with one branch labeled ® and the other 1. It doesn’t
matter which labels go with which branch. Remove C and D from our list of symbols, and replace them
with the newly constructed subtree, whose root has the associated probability of 1/6, the sum of the

probabilities of its two branches.

Now continue, at each step choosing the two symbols and/or subtrees with the lowest probabilities,
combining the choices into a new subtree. At this point in our example:
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+ the symbol A has the probability 1/3,
+ the symbol B the probability 1/2 and
+ the C/D subtree probability 1/6.

So we’ll combine A with the C/D subtree.

On the final step we only have two choices left: B and the A/C/D subtree, which we combine in a new
subtree, whose root then becomes the root of the tree representing the optimal variable-length code.
Happily, this is the code we’ve been using all along!

As mentioned above, we can produce a number of different variable-length codes by swapping the ®
and 1 labels on any of the subtree branches. But all those encodings would have the same expected
length, which is determined by the distance of each symbol from the root of the tree, not the labels
along the path from root to leaf. So all these different encodings are equivalent in terms of their
efficiency.

Can We Do Better?

Can We Do Better?

Huffman’s Algorithm constructed an optimal
encoding... does that mean we can’t do better?

To get a more efficient encoding (closer to
information content) we need to encode sequences
of choices, not just each choice individually. This is
the approach taken by most file compression

algorithms... . )
Lookup "LZW*

AA=1/9, AB=1/6, AC=1/36, AD=1/36 on Wikipedia
BA=1/6, BB=1/4, BC=1/24, BD=1/24
CA=1/36, CB=1/24, (CC=1/144, CD=1/144
DA=1/36, DB=1/24, DC=1/144, DD=1/144

Using Huffman’s Algorithm on pairs:
Average bits/symbol = 1.646 bits

Figure 19.

“Optimal” sounds pretty good! Does that mean we can’t do any better? Well, not by encoding symbols
one-at-a-time. But if we want to encode long sequences of symbols, we can reduce the expected length
of the encoding by working with, say, pairs of symbols instead of only single symbols. The table below
shows the probability of pairs of symbols from our example. If we use Huffman’s Algorithm to build the
optimal variable-length code using these probabilities, it turns out the expected length when encoding
pairs is 1.646 bits/symbol. This is a small improvement on the 1.667 bits/symbols when encoding each
symbol individually. And we’d do even better if we encoded sequences of length 3, and so on.
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Modern file compression algorithms use an adaptive algorithm to determine on-the-fly which se-
quences occur frequently and hence should have short encodings. They work quite well when the data
has many repeating sequences, e.g., natural language data where some letter combinations or even
whole words occur again and again. Compression can achieve dramatic reductions from the original
file size. If you’d like to learn more, look up “LZW” on Wikipedia to read about the Lempel-Ziv-Welch
data compression algorithm?.

Error Detection

Error Detection and Correction

Suppose we wanted to
reliably transmit the
result of a single coin flip:
Heads: “0”
Tails: “1”

Further suppose that during processing a single-
bit error occurs, i.e., a single “0” is turned into a

PR

1” or a “1” is turned into a “0”.

“heads”

Figure 20.

Now let’s think a bit about what happens if there’s an error and one or more of the bits in our encoded
data gets corrupted. We’ll focus on single-bit errors, but much of what we discuss can be generalized
to multi-bit errors.

For example, consider encoding the results from some unpredictable event, e.g., flipping a fair coin.
There are two outcomes: HEADS, encoded as, say, ®, and TAILS encoded as 1. Now suppose some error
occurs during processing, e.g., the data is corrupted while being transmitted from Bob to Alice: Bob
intended to send the message HEADS, but the ® was corrupted and become a 1 during transmission, so
Alice receives 1, which she interprets as TAILS. Note that Alice can’t distinguish between receiving a
message of HEADS that has an error and an uncorrupted message of TAILS - she cannot detect that an
error has occurred. So this simple encoding doesn’t work very well if there’s the possibility of single-bit

errors.

! https://en.wikipedia.org/wiki/LZW.
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Hamming Distance

Hamming Distance

HAMMING DISTANCE: The number of positions in
which the corresponding digits differ in two
encodings of the same length.

01%0(1)10
0100110

6 Differs in 2 positions so
Hamming distance is 2.

Figure 21.

To help with our discussion, we’ll introduce the notion of Hamming distance, defined as the number
of positions in which the corresponding digits differ in two encodings of the same length. For example,
here are two 7-bit encodings, which differ in their third and fifth positions, so the Hamming distance
between the encodings is 2. If someone tells us the Hamming distance of two encodings is 0, then
the two encodings are identical. Hamming distance is a handy tool for measuring how to encodings
differ.
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Hamming Distance and Bit Errors

Hamming Distance & Bit Errors

The Hamming distance between a valid binary
code word and the same code word with a single-
bit error is 1.

The problem with our simple encoding is that the

two valid code words (“0” and “1”) also have a
Hamming distance of 1. So a single-bit error
changes a valid code word into another valid code
word...

single-bit error

heads tails

Figure 22,

How does this help us think about single-bit errors? A single-bit error changes exactly one of the bits of
an encoding, so the Hamming distance between a valid binary code word and the same code word
with a single-bit erroris 1.

The difficulty with our simple encoding is that the two valid code words (8 and 1) also have a Hamming
distance of 1. So a single-bit error changes one valid code word into another valid code word. We'll
show this graphically, using an arrow to indicate that two encodings differ by a single bit, i.e., that the
Hamming distance between the encodings is 1.

The real issue here is that when Alice receives a 1, she can’t distinguish between an uncorrupted
encoding of TAILS and a corrupted encoding of HEADS - she can’t detect that an error occurred. Let’s
figure how to solve her problem!
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Single-bit Error Detection

Single-bit Error Detection

What we need is an encoding where a
single-bit error does not produce another
valid code word.

P single-bit error

A parity bit can be added to any length message
and is chosen to make the total number of “1” bits
even (aka “even parity”). If min HD(code words) =
1, then min HD(code words + parity) = 2.

Figure 23.

The insight is to come up with a set of valid code words such that a single-bit error does NOT produce
another valid code word. What we need are code words that differ by at least two bits, i.e., we want the
minimum Hamming distance between any two code words to be at least 2.

If we have a set of code words where the minimum Hamming distance is 1, we can generate the set we
want by adding a parity bit to each of the original code words. There’s even parity and odd parity -

using even parity, the additional parity bit is chosen so that the total number of 1 bits in the new code
word are even.

For example, our original encoding for HEADS was 0, adding an even parity bit gives us 80. Adding
an even parity bit to our original encoding for TAILS gives us 11. The minimum Hamming distance
between code words has increased from 1 to 2.
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Parity Check

Parity check = Detect Single-bit errors

*To check for a single-bit error (actually any odd
number of errors), count the number of 1s in the
received message and if it’s odd, there’s been an error.

001010011 — original word with parity
000010011 — single-bit error (detected)
000110011 — 2-bit error (not detected)

oNeNe]
— =
— =

*One can “count” by summing the bits in the word
modulo 2 (which is equivalent to XOR’ing the bits
together).

Figure 24.

How does this help? Consider what happens when there’s a single-bit error: 80 would be corrupted to
01 or 10, neither of which is a valid code word - aha! we can detect that a single-bit error has occurred.
Similarly single-bit errors for 11 would also be detected. Note that the valid code words 80 and 11
both have an even number of 1-bits, but that the corrupted code words 81 or 18 have an odd number
of 1-bits. We say that corrupted code words have a parity error.

It’s easy to perform a parity check: simply count the number of 1s in the code word. If it’s even, a
single-bit error has NOT occurred; if it’s odd, a single-bit error HAS occurred. We’ll see in a couple of
chapters that the Boolean function exclusive-or can be used to perform parity checks.

Note that parity won’t help us if there’s an even number of bit errors, where a corrupted code word
would have an even number of 1-bits and hence appear to be okay. Parity is useful for detecting
single-bit errors; we’ll need a more sophisticated encoding to detect more errors.
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Detecting Multi-bit Errors

Detecting Multi-bit Errors

To detect E errors, we need a minimum Hamming
distance of E+1 between code words.

:

§><

o
A~

“tails”

“heads” @
0

X

:

With this encoding, we can detect up to
two bit errors. Note that HD(000,111) =
3

Figure 25.

In general, to detect some number E of errors, we need a minimum Hamming distance of £ + 1
between code words. We can see this graphically below which shows how errors can corrupt the valid
code words 800 and 111, which have a Hamming distance of 3. In theory this means we should be able
to detect up to 2-bit errors.

Each arrow represents a single-bit error and we can see from the diagram that following any path of
length 2 from either 880 or 111 doesn’t get us to the other valid code word. In other words, assuming
we start with either 890 or 111, we can detect the occurrence of up to 2 errors.

Basically our error detection scheme relies on choosing code words far enough apart, as measured
by Hamming distance, so that E errors can’t corrupt one valid code word so that it looks like another

valid code word.
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Error Correction

Single-bit Error Correction
|

1
“neads” GO 010 | it
1 /'

1

|

1

“heads” <«— | — “tails”

By increasing the Hamming distance between valid code
words to 3, we guarantee that the sets of words produced by
single-bit errors don’t overlap. So assuming at most one
error, we can perform error correction since we can tell what
the valid code was before the error happened.

To correct E errors, we need a minimum Hamming distance of
2E+1 between code words.

Figure 26.

Is there any chance we can not only detect a single-bit error but also correct the error to recover the
original data? Sure! Here’s how.

By increasing the Hamming distance between valid code words to 3, we guarantee that the sets of code
words produced by single-bit errors don’t overlap. The set of code words produced by corrupting 000
(100, 010, or 001) has no code words in common with the set of code words produced by corrupting
111 (110, 101, or 011). Assuming that at most one error occurred, we can deduce the original code
word from whatever code word we receive. For example if we receive 001, we deduce that the original
code word was 000 and there has been a single-bit error.

Again we can generalize this insight: if we want to correct up to F errors, the minimum Hamming
distance between valid code words must be at least 2F + 1. For example, to correct single-bit errors
we need valid code words with a minimum Hamming distance of 3.

Coding theory is a research area devoted to developing algorithms to generate code words that have
the necessary error detection and correction properties. You can take entire courses on this topic!
But we’ll stop here with our basic insights: by choosing code words far enough apart (as measured by
Hamming distance) we can ensure that we can detect and even correct errors that have corrupted our
encoded data. Pretty neat!
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Summary

Summary

* Information resolves uncertainty
* Choices equally probable:
* N choices down to M= log,(N/M) bits of information
* use fixed-length encodings
* encoding numbers: 2’s complement signed integers
* Choices not equally probable:

* choice; with probability p; = log,(1/p;) bits of information
* average amount of information = H(X) = ¥p;log,(1/p)
* use variable-length encodings, Huffman’s algorithm

* To detect E-bit errors: Hamming distance > E

* To correct E-bit errors: Hamming distance > 2E

Next time:
+ encoding information electrically
» the digital abstraction
* combinational devices

Figure 27.

28



	Course Contents
	What is Information?
	Quantifying Information
	Information Conveyed by Data
	Example: Information Content
	Probability and Information Content
	Entropy
	Meaning of Entropy
	Encodings
	Encodings as Binary Trees
	Fixed-length Encodings
	Encoding Postive Integers
	Hexadecimal Notation
	Encoding Signed Integers
	Two’s Complement Encoding
	More Two’s Complement
	Variable-length Encodings
	Example: Variable-length Encoding
	Huffman’s Algorithm
	Can We Do Better?
	Error Detection
	Hamming Distance
	Hamming Distance and Bit Errors
	Single-bit Error Detection
	Parity Check
	Detecting Multi-bit Errors
	Error Correction
	Summary


